Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau y = căn (2x - x^2)

243

Với giải Luyện tập 1 trang 17 Toán 12 Tập 1 Kết nối tri thức chi tiết trong Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 12. Mời các bạn đón xem:

Giải bài tập Toán 12 Bài 2: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

Luyện tập 1 trang 17 Toán 12 Tập 1Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của các hàm số sau:

a) y=2xx2;

b) y=x+1x1 trên khoảng (1;+).

Lời giải:

a) Tập xác định của hàm số là [0;2].

Với x[0;2] ta có: y=(2xx2)22xx2=x+12xx2y=0x+12xx2=0x=1(tm)

Lập bảng biến thiên của hàm số trên đoạn [0;2]:

5

Từ bảng biến thiên ta thấy: min[1;1]f(x)=f(0)=f(2)=0,max[1;1]f(x)=f(1)=1.

b) Với x(1;+) ta có:

Ta có: y=1+1(x1)2<0x(1;+)

limx1+y=limx1+(x+1x1)=+;limx+y=limx+(x+1x1)=

Lập bảng biến thiên của hàm số trên (1;+):

Tài liệu VietJack

Vậy hàm số không có giá trị lớn nhất, giá trị nhỏ nhất trên (1;+).

Đánh giá

0

0 đánh giá