Giải Toán 8 trang 72 Tập 2 Chân trời sáng tạo

292

Với lời giải Toán 8 trang 72 Tập 2 chi tiết trong Bài 2: Các trường hợp đồng dạng của hai tam giác sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 2: Các trường hợp đồng dạng của hai tam giác

Bài 8 trang 72 Toán 8 Tập 2: a) Trong Hình 20a, cho biết  N^=E^, M^=D^, MP = 18 m, DF = 24 m, EF = 32 m, NP = a + 3 (m). Tìm a.

b) Cho ABCD là hình thang (AB // CD) (Hình 20b).

Chứng minh rằng ΔAMB ᔕ ΔCMD. Tìm x, y.

Bài 8 trang 72 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Xét ΔMNP  ΔDEF có:

N^=E^, M^=D^

Do đó ΔMNP ᔕ ΔDEF (g.g)

Suy ra NPEF=MPDF (các cạnh tương ứng).

Khi đó a+332=1824=34 nên a+3=32.34=24 (cm).

Vậy a = 24 – 3 = 21.

b) Xét hình thang ABCD (AB // CD):

Vì AB // CD nên  MAB^=MCD^, MBA^=MDC^ (cặp góc so le trong).

Xét ΔAMB và ΔCMD có:

MAB^=MCD^ (chứng minh trên)

MBA^=MDC^ (chứng minh trên)

Do đó ΔAMB ᔕ ΔCMD (g.g)

Suy ra  AMCM=MBMD=ABCD (các cặp cạnh tương ứng).

Khi đó 615=y10=8x .

Suy ra x=15.86=20; y=6.1015=4 .

Vậy x = 20; y = 4.

Bài 9 trang 72 Toán 8 Tập 2: a) Trong Hình 21a, cho biết  HOP^=HPE^, HPO^=HEP^, OH = 6 cm và HE = 4 cm. Tính độ dài đoạn thẳng HP.

b) Trong Hình 21b, cho biết  AME^=AFM^. Chứng minh rằng AM2 = AE.AF.

Bài 9 trang 72 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

a) Xét ΔHOP và ΔHPE có: 

HOP^=HPE^ (gt)

HPO^=HEP^ (gt)

Do đó ΔHOP ᔕ ΔHPE (g.g)

Suy ra HOHP=HPHE (các cặp cạnh tương ứng).

Khi đó 6HP=HP4 nên HP = 6.4 = 24.

Vậy HP=26  cm.

b) Xét ΔAEM và ΔAMF ta có:

A^ chung

AME^=AFM^

Do đó ΔAEM ᔕ ΔAMF (g.g)

Suy ra  AEAM=AMAF nên AM2 = AE.AF (đpcm).

Bài 10 trang 72 Toán 8 Tập 2: Đường đi và khoảng cách từ nhà anh Thanh (điểm M) đến công ty (điểm N) được thể hiện trong Hình 22. Hãy tìm con đường ngắn nhất để đi từ nhà của anh Thanh đến công ty.

Bài 10 trang 72 Toán 8 Tập 2 Chân trời sáng tạo | Giải Toán 8

Lời giải:

Xét ΔIAB  ΔICD ta có:

B^=D^ (gt)

AIB^=CID^ (đối đỉnh)

Suy ra ΔIAB ᔕ ΔICD (g.g) nên IATC=IBID=ABCD

IA2,4=7,8ID=93=3 ⇒ IA = 7,2; ID = 2,6

Quãng đường đi từ M → A → I là: 4,73 + 7,2 = 11,93 (km)

Quãng đường đi từ M → B → I là: 4,27 + 7,8 = 12,07 (km)

Quãng đường đi từ I → C → N là: 2,4 + 1,84 = 4,24 (km)

Quãng đường đi từ I → D → N là: 2,6 + 1,16 = 3,76 (km)

Vậy quãng đường ngắn nhất để đi từ nhà của anh Thanh đến công ty là M → A → I → D → N với độ dài 15,69 km.

Đánh giá

0

0 đánh giá