Với lời giải Toán 11 trang 8 Tập 2 chi tiết trong Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 1: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu ghép nhóm
Lời giải:
Ta có bảng giá trị đại diện và tần số ghép nhóm như sau:
Nhóm |
Giá trị đại diện |
Tần số |
[25; 34) |
29,5 |
3 |
[34; 43) |
38,5 |
3 |
[43; 52) |
47,5 |
6 |
[52; 61) |
56,5 |
5 |
[61; 70) |
65,5 |
4 |
[70; 79) |
74,5 |
3 |
[79; 88) |
83,5 |
4 |
[88; 97) |
92,5 |
2 |
|
|
n = 30 |
Số trung bình cộng của mẫu số liệu đã cho là:
III. Trung vị
Nhóm |
Tần số |
Tần số tích lũy |
[27,5; 32,5) [32,5; 37,5) [37,5; 42,5) [42,5; 47,5) [47,5; 52,5) |
16 24 20 30 9 |
16 40 60 90 99 |
|
n = 99 |
|
Bảng 10
a) Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng = 49,5 có đúng không?
b) Tìm đầu mút trái r, độ dài d, tần số n3 của nhóm 3; tần số tích lũy cf2 của nhóm 2.
c) Tính giá trị Me theo công thức sau: Me = .
Giá trị Me được gọi là trung vị của mẫu số liệu ghép nhóm đã cho.
Lời giải:
a) Nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 49,5 do cf3 = 60 > 49,5.
b) Đầu mút trái r của nhóm 3 là r = 37,5.
Độ dài d của nhóm 3 là d = 42,5 – 37,5 = 5.
Tần số n3 của nhóm 3 là n3 = 20.
Tần số tích lũy cf2 của nhóm 2 là cf2 = 40.
c) Ta có: Me = = 39,875.
Xem thêm các lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Hoạt động 1 trang 3 Toán 11 Tập 2: Trong Bảng 1 ở phần mở đầu ta thấy:...
Luyện tập 5 trang 9 Toán 11 Tập 2: Xác định trung vị của mẫu số liệu ghép nhóm ở Bảng 1....
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác: