Giải Toán 11 trang 41 Tập 2 Chân trời sáng tạo

536

Với lời giải Toán 11 trang 41 Tập 2 chi tiết trong Bài 1: Đạo hàm sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 1: Đạo hàm

Thực hành 3 trang 41 Toán 11 Tập 2: Một người gửi tiết kiệm khoản tiền 5 triệu đồng vào ngân hàng với lãi suất 4% năm và theo thể thức lãi kép liên tục. Tính tổng số tiền vốn và lãi mà người đó nhận được sau:

a) 1 ngày.

b) 30 ngày.

(Luôn coi một năm có 365 ngày.)

Lời giải:

a) Tổng số tiền vốn và lãi mà người đó nhận được sau 1 ngày là:

T=5000000.e0,0413655000548 (đồng)

Vậy tổng số tiền vốn và lãi mà người đó nhận được sau 1 ngày khoảng 5 000 548 đồng.

b) Tổng số tiền vốn và lãi mà người đó nhận được sau 30 ngày là:

T=5000000.e0,04303655016465 (đồng).

Vậy tổng số tiền vốn và lãi mà người đó nhận được sau 30 ngày khoảng 5 016 465 đồng.

Bài tập

Bài 1 trang 41 Toán 11 Tập 2: Dùng định nghĩa để tính đạo hàm của các hàm số sau:

a) f(x) = −x2;

b) f(x) = x− 2x;

c) fx=4x.

Lời giải:

a) Với bất kì x0 ∈ ℝ, ta có:

f'x0=limxx0x2x02xx0=limxx0x2+x02xx0

=limxx0xx0x+x0xx0=limxx0xx0

=x0x0=2x0.

Vậy f'(x)=x2'=2x trên ℝ.

b) Với bất kì x0 ∈ ℝ, ta có:

f'x0=limxx0x32xx032x0xx0

=limxx0x32xx03+2x0xx0=limxx0x3x032x2x0xx0

=limxx0xx0x2+x.x0+x022xx0xx0

=limxx0xx0x2+x.x0+x022xx0

=limxx0x2+x.x0+x022

=x02+x0.x0+x022=3x022.

Vậy f'(x)=x32x'=3x22 trên ℝ.

c) Với bất kì x0 ≠ 0, ta có:

f'x0=limxx04x4x0xx0=limxx04x04xxx0xx0=limxx04x04xxx0xx0

=limxx04xx0xx0xx0=limxx04xx0=4x0.x0=4x02.

Vậy f'(x)=4x'=4x2 trên các khoảng (−∞; 0) và (0; +∞).

Bài 2 trang 41 Toán 11 Tập 2: Cho hàm số f(x) = −2x2 có đồ thị (C) và điểm A(1; −2) ∈ (C). Tính hệ số góc của tiếp tuyến với (C) tại điểm A.

Lời giải:

Hệ số góc của tiếp tuyến với (C) tại điểm A là:

f'1=limx12x22.12x1=limx12x2+2x1

=limx12x21x1=limx12x1x+1x1

=limx12x+1=21+1=4.

Vậy hệ số góc của tiếp tuyến với (C) tại điểm A là −4.

Đánh giá

0

0 đánh giá