Giải Toán 11 trang 74 Tập 2 Kết nối tri thức

409

Với lời giải Toán 11 trang 74 Tập 2 chi tiết trong Bài 29: Công thức cộng xác suất sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 29: Công thức cộng xác suất

Luyện tập 2 trang 74 Toán 11 Tập 2: Một hộp đựng 5 quả cầu màu xanh và 3 quả cầu màu đỏ, có cùng kích thước và khối lượng. Chọn ngẫu nhiên hai quả cầu trong hộp. Tính xác suất để chọn được hai quả cầu có cùng màu.

Lời giải:

Gọi A là biến cố “Chọn được hai quả cầu màu xanh”; B là biến cố “Chọn được hai quả cầu màu đỏ”; C là biến cố “Chọn được hai quả cầu có cùng màu”.

Biến cố C xảy ra khi và chỉ khi hai quả cầu được chọn có cùng màu đỏ hoặc có cùng màu xanh. Biến cố A xảy ra khi hai quả cầu được chọn có cùng màu xanh. Biến cố B xảy ra khi hai quả cầu được chọn có cùng màu đỏ. Vậy C là biến cố hợp của A và B hay C = A∪ B.

Vì A và B là hai biến cố xung khắc nên ta có:

P(C) = P(A ∪ B) = P(A) + P(B).

Do đó, ta cần tính P(A) và P(B).

Không gian mẫu Ω là tập hợp gồm các tập con có hai phần tử của tập có 5 + 3 = 8 phần tử. Do đó, n(Ω) = C82 = 28.

Tính P(A):

Biến cố A là tập hợp gồm các tập con có hai phần tử của tập có 5 phần tử (5 quả cầu màu xanh). Do đó, n(A) = C52 = 10. Suy ra, P(A) = n(A)n(Ω)=1028=514 .

Tính P(B):

Biến cố B là tập hợp gồm các tập con có hai phần tử của tập có 3 phần tử (3 quả cầu màu đỏ). Do đó, n(B) = C32 = 3. Suy ra, P(B) = n(B)n(Ω)=328.

Vậy P(C) = P(A) + P(B) = 514+328=1328 .

2. Công thức cộng xác suất

HĐ3 trang 74 Toán 11 Tập 2: Ở một trường trung học phổ thông X, có 19% học sinh học khá môn Ngữ văn, 32% học sinh học khá môn Toán, 7% học sinh học khá cả hai môn Ngữ văn và Toán. Chọn ngẫu nhiên một học sinh của trường X. Xét hai biến cố sau:

A: “Học sinh đó học khá môn Ngữ văn”;

B: “Học sinh đó học khá môn Toán”.

a) Hoàn thành các mệnh đề sau bằng cách tìm cụm từ thích hợp thay cho dấu “?”.

P(A) là tỉ lệ …(?)… P(AB) là tỉ lệ …(?)…

P(B) là …(?)… P(A∪ B) là …(?)…

b) Tại sao để tính P(A∪ B) ta không áp dụng được công thức P(A ∪ B) = P(A) + P(B)?

Lời giải:

a)

P(A) là tỉ lệ học sinh học khá môn Ngữ văn;

P(B) là tỉ lệ học sinh học khá môn Toán;

P(AB) là tỉ lệ học sinh học khá cả hai môn Ngữ văn và Toán;

P(A∪ B) là tỉ lệ học sinh học khá môn Ngữ văn hoặc học khá môn Toán.

b)

Để tính P(A∪ B) ta không áp dụng được công thức P(A∪ B) = P(A) + P(B) vì hai biến cố A và B không xung khắc, nếu học sinh được chọn nằm trong 7% học sinh học khá cả hai môn Ngữ văn và Toán thì cả A và B cùng xảy ra.

Câu hỏi trang 74 Toán 11 Tập 2: Tại sao công thức cộng xác suất cho hai biến cố xung khắc là hệ quả của công thức cộng xác suất ?

Lời giải:

Công thức cộng xác suất:

P(A∪ B) = P(A) + P(B) – P(AB)

Khi hai biến cố A và B xung khắc thì A ∩ B = nên P(AB) = 0, do đó, công thức cộng xác suất trở thành: P(A∪ B) = P(A) + P(B) – 0 = P(A) + P(B). Đây chính là công thức cộng xác suất cho hai biến cố xung khắc.

Vậy công thức cộng xác suất cho hai biến cố xung khắc là hệ quả của công thức cộng xác suất.

Đánh giá

0

0 đánh giá