Bài 8.8 trang 75 Toán 11 Tập 2 Kết nối tri thức | Giải bài tập Toán lớp 11

601

Với giải Bài 8.8 trang 75 Toán 11 Tập 2 Kết nối tri thức chi tiết trong Bài 29: Công thức cộng xác suất giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 29: Công thức cộng xác suất

Bài 8.8 trang 75 Toán 11 Tập 2: Một khu phố có 50 hộ gia đình nuôi chó hoặc nuôi mèo, trong đó có 18 hộ nuôi chó, 16 hộ nuôi mèo và 7 hộ nuôi cả chó và mèo. Chọn ngẫu nhiên một hộ trong khu phố trên. Tính xác suất để:

a) Hộ đó nuôi chó hoặc nuôi mèo;

b) Hộ đó không nuôi cả chó và mèo.

Lời giải:

Gọi A là biến cố “Hộ đó nuôi chó” ; B là biến cố “Hộ đó nuôi mèo” ; C là biến cố “Hộ đó nuôi cả chó và mèo” ; D là biến cố “Hộ đó nuôi chó hoặc nuôi mèo”.

Như vậy, ta có:

C = A ∩ B; D = A∪ B.

D¯ là biến cố đối của D, tức là D¯ là biến cố “Hộ đó không nuôi cả chó và mèo”.

a)

Áp dụng công thức cộng xác suất ta có:

P(D) = P(A∪ B) = P(A) + P(B) – P(AB) = P(A) + P(B) – P(C)

Ta cần tính P(A), P(B), P(C)

+ Không gian mẫu Ω là tập hợp 50 hộ gia đình nên n(Ω) = 50.

+ Tính P(A):

Biến cố A là tập hợp các hộ gia đình nuôi chó nên n(A) = 18.

Suy ra: P(A) = 1850=925 .

+ Tính P(B):

Biến cố B là tập hợp các hộ gia đình nuôi mèo nên n(B) = 16.

Suy ra: P(B) = 1650=825 .

+ Tính P(C):

Biến cố C là tập hợp các hộ gia đình nuôi cả chó và mèo nên n(C) = 7.

Suy ra: P(C) = 750 .

Do đó, ta có: P(D) = P(A) + P(B) – P(C) = 925+825750=2750 .

Vậy xác suất để hộ được chọn nuôi chó hoặc mèo là 2750.

b)

Áp dụng công thức tính xác suất cho biến cố đối ta có:

P( ) = 1 – P(D) = 1 – 2750 = 2350 .

Vậy xác suất để hộ được chọn không nuôi cả chó và mèo là 2350 .

Đánh giá

0

0 đánh giá