Bài 8.10 trang 75 Toán 11 Tập 2 Kết nối tri thức | Giải bài tập Toán lớp 11

359

Với giải Bài 8.10 trang 75 Toán 11 Tập 2 Kết nối tri thức chi tiết trong Bài 29: Công thức cộng xác suất giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 29: Công thức cộng xác suất

Bài 8.10 trang 75 Toán 11 Tập 2: Tại các trường trung học phổ thông của một tỉnh, thống kê cho thấy có 63% giáo viên môn Toán tham khảo bộ sách giáo khoa A, 56% giáo viên môn Toán tham khảo bộ sách giáo khoa B và 28,5% giáo viên môn Toán tham khảo cả hai bộ sách giáo khoa A và B. Tính tỉ lệ giáo viên môn Toán tại các trường trung học phổ thông của tỉnh đó không tham khảo cả hai bộ sách giáo khoa A và B.

Lời giải:

Gọi A là biến cố “Giáo viên môn Toán tham khảo bộ sách A”; B là biến cố “Giáo viên môn Toán tham khảo bộ sách B”.

Do đó, A ∩ B là biến cố “Giáo viên Toán tham khảo cả hai bộ sách A và B”;

C = A ∪ B là biến cố “Giáo viên Toán tham khảo ít nhất một trong hai bộ sách A và B”.

Biến cố đối của C là biến cố C¯ : “Giáo viên Toán không tham khảo cả hai bộ sách giáo khoa A và B”.

Ta có:

P(A) = 63% = 0,63

P(B) = 56% = 0,56

P(AB) = 28,5% = 0,285

Áp dụng công thức cộng xác suất ta có:

P(C) = P(A ∪ B) = P(A) + P(B) – P(AB) = 0,63 + 0,56 – 0,285 = 0,905.

Áp dụng công thức xác suất cho biến cố đối ta có:

P(C¯) = 1 – P(C) = 1 – 0,905 = 0,095.

Vậy xác suất để giáo viên đó không tham khảo cả hai bộ sách giáo khoa A và B là 0,095. Tức là, tỉ lệ có 9,5%giáo viên môn Toán tại các trường trung học phổ thông của tỉnh đó không tham khảo cả hai bộ sách giáo khoa A và B.

Đánh giá

0

0 đánh giá