Giải Toán 11 trang 18 Tập 2 Kết nối tri thức

264

Với lời giải Toán 11 trang 18 Tập 2 chi tiết trong Bài 20: Hàm số mũ và hàm số lôgarit sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải Toán 11 Bài 20: Hàm số mũ và hàm số lôgarit

HĐ3 trang 18 Toán 11 Tập 2: Nhận biết hàm số lôgarit

a) Tính y = log2x khi x lần lượt nhận các giá trị 1; 2; 4. Với mỗi giá trị của x > 0 có bao nhiêu giá trị của y = log2x ­tương ứng?

b) Với những giá trị nào của x, biểu thức y = log2x có nghĩa?

Lời giải:

a) Ta có:

+ Với x = 1 thì y = log21 = 0;

+ Với x = 2 thì y = log22 = 1;

+ Với x = 4 thì y = log24 = log222 = 2.

Nhận thấy với mỗi giá trị của x > 0 có duy nhất một giá trị của y = log2x ­tương ứng.

b) Biểu thức y = log2x có nghĩa khi x > 0.

Câu hỏi trang 18 Toán 11 Tập 2: Trong các hàm số sau, những hàm số nào là hàm số lôgarit? Khi đó hãy chỉ ra cơ số

a) y=log3x;

b) y = log22x;

c) y = logx2;

d) y=log1x5.

Lời giải:

a) Hàm số y=log3x là hàm số lôgarit với cơ số 3.

b) Ta có y = log22x = log14x, do đó hàm số đã cho là hàm số lôgarit với cơ số 14.

c) Hàm số y = logx2 không phải hàm số lôgarit.

d) Hàm số y=log1x5 không phải hàm số lôgarit.

HĐ4 trang 18 Toán 11 Tập 2: Nhận dạng đồ thị và tính chất của hàm số lôgarit

Cho hàm số lôgarit y = log2x.

a) Hoàn thành bảng giá trị sau:

HĐ4 trang 18 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

b) Trong mặt phẳng toạ độ Oxy, biểu diễn các điểm (x; y) trong bảng giá trị ở câu a. Bằng cách làm tương tự, lấy nhiều điểm (x; log2x) và nối lại ta được đồ thị của hàm số y = log2x.

c) Từ đồ thị đã vẽ ở câu b, hãy kết luận về tập giá trị và tính chất biến thiên của hàm số y = log2x.

Lời giải:

a) Ta có log22– 3 = – 3; log22– 2 = – 2; log22– 1 = – 1; log21 = 0; log­22 = 1; log222 = 2; log223 = 3. Vậy ta hoàn thành được bảng đã cho như sau:

HĐ4 trang 18 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

b) Trên mặt phẳng tọa độ Oxy, ta biểu diễn các điểm (x; y) ở câu a và lấy thêm nhiều điểm (x; log2x) với x > 0, nối lại ta được đồ thị của hàm số y = log2x như sau:

HĐ4 trang 18 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

c) Từ đồ thị đã vẽ ở câu b, nhận thấy hàm số y = log2x:

+ Có tập giá trị là ℝ;

+ Đồng biến trên (0; + ∞).

Vận dụng trang 19 Toán 11 Tập 2: Giải bài toán trong tình huống mở đầu (kết quả tính theo đơn vị triệu người và làm tròn đến chữ số thập phân thứ hai).

Lời giải:

Theo bài ra ta có P = 97,34; r = 0,91%.

Từ năm 2020 đến năm 2050 là 30 năm nên t = 30.

Ước tính dân số Việt Nam vào năm 2050 là

A = Pert = 97,34 ∙ e0,91% ∙ 30 ≈ 127,9 (triệu người).

Đánh giá

0

0 đánh giá