Với lời giải SBT Toán 11 trang 100 Tập 2 chi tiết trong Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
a) Tính góc giữa đường thẳng SB và mặt phẳng (SAC).
b) Gọi α là số đo của góc nhị diện [S, CD, A]. Tính cosα.
c) Gọi d là giao tuyến giữa hai mặt phẳng (SAB) và (SCD), β là số đo của góc nhị diện [A, d, D]. Tính cosβ.
d*) Gọi γ là số đo góc nhị diện [B, SC, D]. Tính cosγ.
Lời giải:
a) Ta có: SO ⊥ (ABCD) và OB ⊂ (ABCD) nên SO ⊥ OB.
Do ABCD là hình vuông nên OB ⊥ AC.
Ta có: OB ⊥ SO, OB ⊥ AC và SO ∩ AC = O trong (SAC) nên OB ⊥ (SAC) hay O là hình chiếu vuông góc của B trên (SAC).
Do đó góc giữa SB và (SAC) là góc giữa SB và SO và bằng .
Vì ABCD là hình vuông cạnh a, nên
Xét tam giác SDB có: SB = SD = a và SB2 + SD2 = a2 + a2 = 2a2 = BD2 nên tam giác SBD vuông cân tại S.
Hơn nữa SO ⊥ BD (vì SO ⊥ (ABCD)).
Nên SO là đường phân giác của
Vậy góc giữa đường thẳng SB và mặt phẳng (SAC) bằng 45°.
b) Gọi N là trung điểm của CD suy ra
Ta có: tam giác SCD đều (vì SC = SD = CD = a), SN là đường trung tuyến
Suy ra: SN ⊥ CD.
Áp dụng định lí Pythagore trong tam giác SNC vuông tại N có
SC2 = CN2 + SN2
Suy ra
Xét tam giác ACD có: O, N lần lượt là trung điểm của AC và DC nên ON là đường trung bình của tam giác ACD.
Suy ra: ON // AD và
Mà AD ⊥ CD (vì ABCD là hình vuông)
Nên ON ⊥ CD.
Ta thấy: SN ⊥ CD, ON ⊥ CD và SN ∩ ON = N ∈ CD.
Suy ra chính là góc phẳng nhị diện của góc nhị diện [S, CD, A], tức là
Vì SO ⊥ (ABCD) và ON ⊂ (ABCD) nên SO ⊥ ON.
Xét tam giác SNO vuông tại O có:
c) Ta có: S ∈ (SAB) ∩ (SCD), AB // CD, AB ⊂ (SAB) và CD ⊂ (SCD)
Suy ra giao tuyến d của hai mặt phẳng (SAB) và (SCD) đi qua S và song song với AB và CD.
Gọi M là trung điểm của AB.
Tương tự câu b) ta có và
Ta có: tam giác SAB đều (vì SA = SB = AB = a), SM là đường trung tuyến
Nên SM ⊥ AB mà AB // d suy ra SM ⊥ d.
Tương tự ta có: SN ⊥ CD mà CD // d suy ra SN ⊥ d.
Ta thấy: SM ⊥ d, SN ⊥ d và SM ∩ SN = S ∈ d và SM, SN lần lượt nằm trong mặt phẳng nhị diện chứa đường thẳng d và điểm A, mặt phẳng nhị diện chứa đường thẳng d và điểm D.
Suy ra là góc phẳng nhị diện của góc nhị diện [A, d, D], tức là
Áp dụng định lí Cosin trong tam giác SMN có:
d) Gọi H là hình chiếu của B trên SC nên BH ⊥ SC.
Ta có OB ⊥ (SAC) hay BD ⊥ (SAC).
Mà SC ⊂ (SAC) nên BD ⊥ SC.
Ta có: SC ⊥ BH, SC ⊥ BD và BH ∩ BD = B trong (BHD) nên SC ⊥ (BHD)
Mặt khác HD ⊂ (BHD) nên SC ⊥ HD.
Ta thấy: HD ⊥ SC, BH ⊥ SC và HD ∩ BH = H ∈ SC.
Suy ra là góc phẳng nhị diện của góc nhị diện [B, SC, D], tức là
Xét tam giác SBC đều cạnh a (vì SB = SC = SD = BC = CD = a) có: BH ⊥ SC.
Nên BH là đường trung tuyến, suy ra
Áp dụng định lí Pythagore trong tam SBH vuông tại H có:
SB2 = BH2 + SH2
Suy ra
Tương tự: tam giác SCD đều và đường trung tuyến
Áp dụng định lí Cosin trong tam giác BHD có:
Lời giải:
Gọi H là hình chiếu của A trên CD suy ra AH ⊥ CD.
Ta có: SA ⊥ (ABCD), CD ⊂ (ABCD) và AH ⊂ (ABCD).
Suy ra: SA ⊥ CD và SA ⊥ AH.
Ta có: CD ⊥ AH, CD ⊥ SA và AH ∩ SA = A trong (SAH) nên CD ⊥ (SAH).
Mà SH ⊂ (SAH), suy ra CD ⊥ SH.
Ta thấy: SH ⊥ CD, AH ⊥ CD và SH ∩ AH = H ∈ CD.
Suy ra là góc phẳng nhị diện của góc nhị diện [S, CD, A].
Vì AD = CD = AC = a nên tam giác ACD đều.
Hơn nữa, AH là đường cao của tam giác ACD (do AH ⊥ CD) nên AH cũng là đường đường trung tuyến của tam giác ACD.
Suy ra
Áp dụng định lí Pythagore trong tam giác AHD vuông tại H có:
AD2 = AH2 + HD2
Suy ra
Xét tam giác SAH vuông tại A có:
Vậy số đo của góc nhị diện [S, CD, A] là
Lời giải:
Trong (SAC): Kẻ AN ⊥ SO (N ∈ SC), gọi M = AN ∩ SO (M ∈ SO).
Trong (SOB): Kẻ PM ⊥ SO tại M (P ∈ SB).
· Ta có: AM ⊥ SO, PM ⊥ SO và AM ∩ PM = M ∈ SO.
Suy ra là góc phẳng nhị diện của góc nhị diện [A, SO, B], tức là
· Lại có: NM ⊥ SO, PM ⊥ SO và NM ∩ PM = M ∈ SO.
Suy ra là góc phẳng nhị diện của góc nhị diện [B, SO, C], tức là
Suy ra:
Trong (APN) có: M ∈ AN nên 3 điểm A, M, N thẳng hàng, do đó
Từ đó ta có: α + β = 180°.
SA = SB = SC = SD ⇔ α1 = α2 = α3 = α4.
Lời giải:
Gọi O là hình chiếu của S trên (ABCD) hay SO ⊥ (ABCD).
Mà OA, OB, OC, OD đều nằm trên (ABCD) nên SO ⊥ OA, SO ⊥ OB, SO ⊥ OC, SO ⊥ OD.
Suy ra: bốn tam giác SAO, SBO, SCO, SDO vuông tại O nên các góc , đều lớn hơn 0° và nhỏ hơn 90°.
Vì O là hình chiếu của S trên (ABCD), ta suy ra: và 0° < α1 < 90°.
Xét tam giác SAO vuông tại O có: .
Chứng minh tương tự, ta cũng có:
· (0° < α2 < 90°).
· (0° < α3 < 90°).
· (0° < α4 < 90°).
Như vậy: SA = SB = SC = SD
⇔ sinα1 = sinα2 = sinα3 = sinα4
⇔ α1 = α2 = α3 = α4 (vì 0° < α1 < 90°; 0° < α2 < 90°; 0° < α3 < 90°; 0° < α4 < 90°)
Vậy SA = SB = SC = SD ⇔ α1 = α2 = α3 = α4.
Lời giải:
Vẽ hình tam giác OHA với: OA biểu diễn cho ống hấp nhiệt chân không, OH biểu diễn bóng nắng (hình chiếu vuông góc của ống hấp nhiệt chân không lên mặt sân do tia nắng chiếu vuông góc với mặt sân). Hay OH là hình chiếu của OA trên mặt sân.
Khi đó ta có: AH ⊥ OH.
Và góc tạo bởi các ống hấp nhiệt chân không và mặt sân thượng là góc giữa hai đường thẳng OA và OH và là góc
Theo đề bài ta có: OA = 1,8 (m), OH = 1,2 (m).
Xét tam giác OHA vuông tại H có:
Vậy các ống hấp nhiệt chân không tạo với mặt sân thượng một góc bằng khoảng 48°.
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: