Cho hình chóp S.ABC có SA ⊥ (ABC), AB ⊥ BC, SA = AB = 3a, BC = 4a

2.2 K

Với giải Bài 27 trang 99 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện

Bài 27 trang 99 SBT Toán 11 Tập 2Cho hình chóp S.ABC có SA ⊥ (ABC), AB ⊥ BC, SA = AB = 3a, BC = 4a. Gọi α, β, γ lần lượt là số đo của các góc nhị diện [B, SA, C], [A, BC, S], [A, SC, B]. Tính:

a) cosα, cosβ;

b*) cosγ.

Lời giải:

Cho hình chóp S.ABC có SA ⊥ (ABC), AB ⊥ BC, SA = AB = 3a, BC = 4a

a) Do SA ⊥ (ABC) nên SA ⊥ AB, SA ⊥ AC và SA ⊥ BC.

· Ta có: AB ⊥ SA, AC ⊥ SA và AB ∩ AC = A ∈ SA.

Suy ra BAC^ chính là góc phẳng nhị diện của góc nhị diện [B, SA, C], tức là α=BAC^.

Xét tam giác ABC vuông tại B có:

AC2 = AB2 + BC2 ⇒ AC2 = (3a)2 + (4a)2 = 25a⇒ AC = 5a.

Và cosα=cosBAC^=ABAC=3a5a=35.

· Ta có: BC ⊥ SA, BC ⊥ AB và SA ∩ AB = A trong (SAB) suy ra BC ⊥ (SAB).

Mà SB ⊂ (SBC) nên BC ⊥ SB.

Ta có: AB ⊥ BC, SB ⊥ BC và AB ∩ SB = B ∈ BC.

Suy ra SBA^ chính là góc phẳng nhị diện của góc nhị diện [A, BC, S], tức là β=SBA^.

Xét tam giác SAB vuông tại A có:

SB2 = SA2 + AB2 ⇒ SB2 = (3a)2 + (3a)2 = 18a2 SB=32a.

Và cosβ=cosSBA^=ABSB=3a32a=22.

b*) Gọi H và K lần lượt là hình chiếu của A trên SB và SC nên AH ⊥ SB và AK ⊥ SC.

Do BC ⊥ (SAB) (cmt) và AH ⊂ (SAB) nên BC ⊥ AH.

Ta có: AH ⊥ SB, AH ⊥ BC và SB ∩ BC = B trong (SBC) nên AH ⊥ (SBC).

Mà SC ⊂ (SBC) và HK ⊂ (SBC).

Suy ra: AH ⊥ SC và AH ⊥ HK.

Ta có: SC ⊥ AH, SC ⊥ AK (cmt) và AH ∩ AK = A trong (AHK) nên SC ⊥ (AHK).

Mà HK ⊂ (AHK).

Suy ra SC ⊥ HK.

Từ đó ta có: HK ⊥ SC, AK ⊥ SC và HK ∩ AK = K ∈ SC.

Suy ra AKH^ chính là góc phẳng nhị diện của góc nhị diện [A, SC, B], tức là γ=AKH^.

Áp dụng hệ thức lượng trong:

· Tam giác SAB vuông tại A với đường cao AH có:

AH. SB = SA. AB AH=SA.ABSB=3a.3a32a=32a.

· Tam giác SAC vuông tại A với đường cao AK có:

AK. SC = SA. AC AK=SA.ACSC=SA.ACSA2+AC2

(Do tam giác SAC vuông tại A nên SC=SA2+AC2)

AK=3a.5a3a2+5a2=15a2a34=15a34.

Xét tam giác AHK vuông tại H (vì AH ⊥ HK) có:

HK=AK2AH2=15a3423a22=6a17.

Và cosγ=cosAKH^=HKAK=6a1715a34=225.

Đánh giá

0

0 đánh giá