Với lời giải SBT Toán 11 trang 99 Tập 2 chi tiết trong Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 3: Góc giữa đường thẳng và mặt phẳng. Góc nhị diện
A. 90° – φ;
B. 180° – φ;
C. φ;
D. 90° + φ.
Lời giải:
Đáp án đúng là: C
Gọi B1 = d ∩ (P), B2 = d ∩ (Q).
Gọi A1, A2 lần lượt là hình chiếu của A (A ∈ d) trên mặt phẳng (P) và (Q).
Khi đó đường thẳng d1 (đi qua A1, B1) và d2 (đi qua A2 và B2) lần lượt là hình chiếu của d trên mặt phẳng (P) và (Q).
Suy ra: Góc giữa đường thẳng d và mặt phẳng (P) chính là góc giữa hai đường thẳng d và d1, góc giữa đường thẳng d và mặt phẳng (Q) chính là góc hai giữa đường thẳng d và d2.
Lại có: AA1 ⊥ (P) mà (P) // (Q) nên AA1 ⊥ (Q).
Mặt khác AA2 ⊥ (Q)
Suy ra A, A1, A2 thẳng hàng hay A1 ∈ AA2.
Xét tam giác AA2B2 có:
A1B1 ⊥ A1A2 (vì AA1 ⊥ (P) và A1B1 ⊂ (P))
A2B2 ⊥ A1A2 (vì AA2 ⊥ (Q) và A2B2 ⊂ (P))
Suy ra: A1B1 // A2B2 hay d1 // d2.
Từ đó ta có: Góc hai giữa đường thẳng d và d2 bằng góc giữa hai đường thẳng d và d1 hay góc giữa đường thẳng d và mặt phẳng (Q) bằng góc giữa đường thẳng d và mặt phẳng (P) và bằng φ (0° < φ < 90°).
A. 90° – φ;
B. φ;
C. 90° + φ;
D. 180° – φ.
Lời giải:
Đáp án đúng là: B
Gọi a’, b’ lần lượt là hình chiếu của a và b trên mặt phẳng (P).
Khi đó: góc giữa đường thẳng a và mặt phẳng (P) chính là góc giữa hai đường thẳng a và a’; góc giữa đường thẳng b và mặt phẳng (P) chính là góc giữa hai đường thẳng b và b’.
Vì a // b nên a’ // b’ (tính chất phép chiếu vuông góc).
Suy ra: Góc giữa hai đường thẳng b và b’ bằng góc giữa hai đường thẳng a và a’ hay góc giữa đường thẳng b và mặt phẳng (P) bằng góc giữa đường thẳng a và mặt phẳng (P) và bằng φ (0° < φ < 90°).
A. α = 90° – β;
B. α = 180° – β;
C. α = 90° + β;
D. α = β.
Lời giải:
Đáp án đúng là: D
Do SA ⊥ (ABC) nên hình chiếu của S trên (ABC) là điểm A.
Suy ra: Góc góc giữa SI và (ABC) chính là , tức là >. (1)
Ta có: SA ⊥ (ABC), BC ⊂ (ABC) nên SA ⊥ BC.
Ta có: BC ⊥ SA, BC ⊥ AI (gt) và AI ∩ SA = A trong (SAI).
Suy ra: BC ⊥ (SAI) nên SI ⊥ BC (vì SI ⊂ (SAI)).
Ta thấy: SI ⊥ BC, AI ⊥ BC và SI ∩ AI = I ∈ BC nên > chính là góc phẳng nhị diện của góc nhị diện [S, BC, A], tức là . (2)
Từ (1) và (2) ta có: α = β.
a) cosα, cosβ;
b*) cosγ.
Lời giải:
a) Do SA ⊥ (ABC) nên SA ⊥ AB, SA ⊥ AC và SA ⊥ BC.
· Ta có: AB ⊥ SA, AC ⊥ SA và AB ∩ AC = A ∈ SA.
Suy ra chính là góc phẳng nhị diện của góc nhị diện [B, SA, C], tức là
Xét tam giác ABC vuông tại B có:
AC2 = AB2 + BC2 ⇒ AC2 = (3a)2 + (4a)2 = 25a2 ⇒ AC = 5a.
Và
· Ta có: BC ⊥ SA, BC ⊥ AB và SA ∩ AB = A trong (SAB) suy ra BC ⊥ (SAB).
Mà SB ⊂ (SBC) nên BC ⊥ SB.
Ta có: AB ⊥ BC, SB ⊥ BC và AB ∩ SB = B ∈ BC.
Suy ra chính là góc phẳng nhị diện của góc nhị diện [A, BC, S], tức là
Xét tam giác SAB vuông tại A có:
SB2 = SA2 + AB2 ⇒ SB2 = (3a)2 + (3a)2 = 18a2
Và
b*) Gọi H và K lần lượt là hình chiếu của A trên SB và SC nên AH ⊥ SB và AK ⊥ SC.
Do BC ⊥ (SAB) (cmt) và AH ⊂ (SAB) nên BC ⊥ AH.
Ta có: AH ⊥ SB, AH ⊥ BC và SB ∩ BC = B trong (SBC) nên AH ⊥ (SBC).
Mà SC ⊂ (SBC) và HK ⊂ (SBC).
Suy ra: AH ⊥ SC và AH ⊥ HK.
Ta có: SC ⊥ AH, SC ⊥ AK (cmt) và AH ∩ AK = A trong (AHK) nên SC ⊥ (AHK).
Mà HK ⊂ (AHK).
Suy ra SC ⊥ HK.
Từ đó ta có: HK ⊥ SC, AK ⊥ SC và HK ∩ AK = K ∈ SC.
Suy ra chính là góc phẳng nhị diện của góc nhị diện [A, SC, B], tức là
Áp dụng hệ thức lượng trong:
· Tam giác SAB vuông tại A với đường cao AH có:
AH. SB = SA. AB
· Tam giác SAC vuông tại A với đường cao AK có:
AK. SC = SA. AC
(Do tam giác SAC vuông tại A nên )
Xét tam giác AHK vuông tại H (vì AH ⊥ HK) có:
Và
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải SBT Toán lớp 11 Cánh diều hay, chi tiết khác: