Giải SBT Toán 11 trang 38 Tập 2 Chân trời sáng tạo

413

Với lời giải SBT Toán 11 trang 38 Tập 2 chi tiết trong Bài tập cuối chương 6 sách Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 1: Đạo hàm

Bài 1 trang 38 SBT Toán 11 Tập 2: Cho hàm số y=x3. Chứng minh rằng y'x=13x23x0.

Lời giải:

Với x00, ta có:

y'x0=limxx0fxfx0xx0=limxx0x3x03xx0

=limxx0x3x03x3x03x23+xx03+x023

=limxx01x23+xx03+x023=13x023.

Vậy y'x=13x23x0.

Bài 2 trang 38 SBT Toán 11 Tập 2: Cho parabol (P) có phương trình y=x2. Tìm hệ số góc của tiếp tuyến của parabol (P).

a) Tại điểm (−1; 1);

b) Tại giao điểm của (P) với đường thẳng y = −3x + 2.

Lời giải:

Ta có y'=2x.

a) Phương trình tiếp tuyến của (P) tại điểm (−1; 1) có hệ số góc y'(1)=2.1=2.

b) Gọi giao điểm của (P) với đường thẳng y = −3x + 2 là M(x0; y0).

Ta có x02=3x0+2x02+3x02=0

x0=3+172; x0=3172.

•Với x0=3+172, hệ số góc của tiếp tuyến là y'3+172=3+17.

•Với x0=3172, hệ số góc của tiếp tuyến là y'3172=317.

Bài 3 trang 39 SBT Toán 11 Tập 2: Xét tính liên tục, sự tồn tại đạo hàm và tính đạo hàm (nếu có) của các hàm số sau đây trên ℝ.

Lời giải:

a) Ta có

limx2+fx=limx2+1x+1=12+1=13;

limx2fx=limx2x2x+2=222+2=4.

limx2+fx=134=limx2fx nên f(x) gián đoạn tại 2, do đó f(x) không có đạo hàm tại 2.

b) Ta có

limx1+fx=limx1+2x+1=21+1=3;

limx1fx=limx1x2+2=12+2=3.

limx1+fx=3=limx1fx nên f(x) liên tục tại 1.

Ta lại có

limx1fxf1x1=limx1x2+2x3x1

=limx1x1x+3x1=limx1x+3=1+3=4.

limx1+fxf1x1=limx1+2x+13x1

=limx1+2x2x1=limx1+22xxx1

=limx1+2x=21=2.

limx1fxf1x1limx1+fxf1x1 nên không tồn tại limx1fxf1x1.

Vậy f(x) không có đạo hàm tại x = 1.

Đánh giá

0

0 đánh giá