Với giải Bài 4 trang 39 SBT Toán lớp 11 Chân trời sáng tạo chi tiết trong Bài 1: Đạo hàm giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán 11 Bài 1: Đạo hàm
Bài 4 trang 39 SBT Toán 11 Tập 2: Gọi (C) là đồ thị của hàm số y = x3 − 2x2 +1. Viết phương trình tiếp tuyến của (C) sao cho tiếp tuyến đó
a) Song song với đường thẳng y = −x + 2;
b) Vuông góc với đường thẳng ;
c) Đi qua điểm A(0; 1).
Lời giải:
Ta có .
a) Gọi d1 là tiếp tuyến cần tìm của (C) và M0(x0; y0) là tiếp điểm của (C) và d1.
Vì d1 song song với đường thẳng y = −x + 2 nên .
Suy ra hoặc .
− Với , phương trình tiếp tuyến tại điểm có hệ số góc là:
.
− Với , phương trình tiếp tuyến tại điểm có hệ số góc là:
Vậy tiếp tuyến của (C) song song với đường thẳng y = −x + 2 là: và .
b) Gọi d1 là tiếp tuyến cần tìm của (C) và M0(x0; y0) là tiếp điểm của (C) và d1.
Vì d1 vuông góc với đường thẳng nên .
Suy ra hoặc .
− Với , phương trình tiếp tuyến tại điểm có hệ số góc là:
.
− Với , phương trình tiếp tuyến tại điểm có hệ số góc là:
Vậy tiếp tuyến của (C) song song với đường thẳng y = −x + 2 là: và .
c) Gọi d1 là tiếp tuyến cần tìm của (C) đi qua điểm A(0; 1) tại tiếp điểm M(x0;f(x0)).
Phương trình tiếp tuyến d1 của (C) có dạng:
Vì d1 đi qua điểm A(0; 1) nên
;
− Với , phương trình đường thẳng d1 là:
.
− Với , phương trình đường thẳng d1 là:
.
Vậy tiếp tuyến của (C) đi qua điểm A(0; 1) là: và .
Xem thêm lời bài sách bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Bài 1 trang 38 SBT Toán 11 Tập 2: Cho hàm số . Chứng minh rằng ....
Xem thêm các bài giải SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các bài giải SBT Toán 11 Chân trời sáng tạo hay, chi tiết khác: