Bài 9.35 trang 109 Toán 8 Tập 2 Kết nối tri thức | Giải bài tập Toán lớp 8

563

Với giải Bài 9.35 trang 109 Toán 8 Tập 2 Kết nối tri thức chi tiết trong Luyện tập chung (trang 108) giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Luyện tập chung (trang 108)

Bài 9.35 trang 109 Toán 8 Tập 2: Cho tam giác ABC vuông tại A có đường cao AH. Cho M và N lần lượt là trung điểm của AB và AC. Chứng minh ΔHBM∽ ΔHAN.

Lời giải:

Bài 9.35 trang 109 Toán 8 Tập 2 | Kết nối tri thức Giải Toán

Ta có:HBA^=CBA^=90°ACB^=HAC^(tam giác ABC vuông tại A và tam giác HAC vuông tại H).

Xét hai tam giác HBA vuông tại H và tam giác HAC vuông tại H cóHBA^=HAC^ (chứng minh trên) nên ∆HBA ∽ ∆HAC.

Suy ra HBHA=BAAC=2BM2AN=BMAN  (Vì M, N là trung điểm của AB và AC).

Xét tam giác HBM và tam giác HAN có

BMAN=HBHA (chứng minh trên)

HBA^=HAC^hay HBM^=HAN^

Do đó ∆HBM ∽ ∆HAN (c.g.c).

Đánh giá

0

0 đánh giá