Bài 8.13 trang 78 Toán 11 Tập 2 Kết nối tri thức | Giải bài tập Toán lớp 11

624

Với giải Bài 8.13 trang 78 Toán 11 Tập 2 Kết nối tri thức chi tiết trong Bài 30: Công thức nhân xác suất cho hai biến cố độc lập giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 30: Công thức nhân xác suất cho hai biến cố độc lập

Bài 8.13 trang 78 Toán 11 Tập 2: Có hai túi đựng các viên bi có cùng kích thước và khối lượng. Túi I có 3 viên bi màu xanh và 7 viên bi màu đỏ. Túi II có 10 viên bi màu xanh và 6 viên bi màu đỏ. Từ mỗi túi, lấy ngẫu nhiên ra một viên bi. Tính xác suất để:

a) Hai viên bi được lấy có cùng màu xanh;

b) Hai viên bi được lấy có cùng màu đỏ;

c) Hai viên bi được lấy có cùng màu;

d) Hai viên bi được lấy không cùng màu.

Lời giải:

Vì hai túi là khác nhau nên biến cố lấy một viên bi mỗi túi là độc lập.

Gọi biến cố A: “Hai viên bi được lấy có cùng màu xanh”;

B là biến cố “Hai viên bi được lấy có cùng màu đỏ”;

C là biến cố “Hai viên bi được lấy có cùng màu”.

a)

Xác suất lấy được viên bi màu xanh từ túi I là: 310 .

Xác suất lấy được viên bi màu xanh từ túi II là: 1016=58 .

Theo quy tắc nhân, xác suất lấy được hai viên bi cùng màu xanh là:

P(A) = 310.58=316 .

b)

Xác suất lấy được viên bi màu đỏ từ túi I là: 710 .

Xác suất lấy được viên bi màu đỏ từ túi II là: 616=38 .

Theo quy tắc nhân, xác suất lấy được hai viên bi cùng màu đỏ là:

P(B) = 710.38=2180 .

c)

Ta có C = A ∪ B mà A và B xung khắc nên áp dụng công thức cộng xác suất:

P(C) = P(A ∪ B) = P(A) + P(B) = 316+2180=920 .

Vậy xác suất để hai viên bi được lấy có cùng màu là: 920 .

d) Gọi biến cố D: “Hai viên bi được lấy không cùng màu”.

Khi đó, D¯=C.

Suy ra: P(D) = 1 – P(D¯) = 1 – P(C) = 1 – 920 = 1120 .

Vậy xác suất để hai viên bi được lấy không cùng màu là 1120.

Đánh giá

0

0 đánh giá