Giải SGK Toán 11 Bài 26 (Kết nối tri thức): Khoảng cách

7.1 K

Tailieumoi.vn giới thiệu Giải bài tập Toán lớp 11 Bài 26: Khoảng cách chi tiết sách Toán 11 Tập 2 Kết nối tri thức giúp học sinh xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 26: Khoảng cách

1. Khoảng cách từ một điểm đến một đường thẳng , đến một mặt phẳng

Giải Toán 11 trang 54 Tập 2

HĐ1 trang 54 Toán 11 Tập 2: a) Cho điểm M và đường thẳng a. Gọi H là hình chiếu của M trên a. Với mỗi điểm K thuộc a, giải thích vì sao MK  MH (H.7.74).

b) Cho điểm M và mặt phẳng (P). Gọi H là hình chiếu của M lên (P). Với mỗi điểm K thuộc (P), giải thích vì sao MK  MH (H7.75).

HĐ1 trang 54 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

 

Lời giải:

a) Vì H là hình chiếu của M trên a nên MH  a hay MH là đường vuông góc kẻ từ điểm M đến đường thẳng a. Khi đó MH là đường ngắn nhất nên MK  MH.

b) Vì H là hình chiếu của M lên (P) nên MH  (P), suy ra MH  KH.

Dựa vào quan hệ giữa đường xiên và đường vuông góc ta có MK  MH.

Giải Toán 11 trang 55 Tập 2

Luyện tập 1 trang 55 Toán 11 Tập 2: Cho hình lăng trụ đứng ABC.A'B'C' có ABC là tam giác vuông cân tại A, AB = a, AA' = h (H.7.77).

a) Tính khoảng cách từ A đến mặt phẳng (BCC'B').

b) Tam giác ABC' là tam giác gì? Tính khoảng cách từ A đến BC'.

Luyện tập 1 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Luyện tập 1 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Vì ABC.A'B'C' là hình lăng trụ đứng nên BB'  (ABC) nên (BCC'B')  (ABC).

Hạ AH  BC tại H.

 Luyện tập 1 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Khi đó AH chính là khoảng cách từ A đến mặt phẳng (BCC'B').

Vì tam giác ABC vuông cân tại A nên AB = AC = a.

Xét tam giác ABC vuông cân tại A, có

1AH2=1AB2+1AC2=1a2+1a2=2a2AH=a2

Vậy khoảng cách từ A đến mặt phẳng (BCC'B') bằng a2.

b) Vì tam giác ABC vuông cân tại A nên AB  AC.

Vì AA'  (ABC) nên AA'  AB mà AB  AC nên AB  (ACC'A'), suy ra AB  AC'.

Do đó tam giác ABC' là tam giác vuông tại A.

Hạ AK  BC' tại K. Khi đó d(A, BC') = AK.

Vì ACC'A' là hình chữ nhật nên AC'2=AA'2+A'C'2=h2+a2 .

Xét tam giác ABC' vuông tại A, AK là đường cao, ta có:

1AK2=1AB2+1AC'2=1a2+1a2+h2=2a2+h2a2a2+h2

AK2=a2a2+h22a2+h2AK=aa2+h22a2+h2

Vậy khoảng cách từ A đến BC' bằng aa2+h22a2+h2.

2. Khoảng cách giữa các đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song

HĐ2 trang 55 Toán 11 Tập 2: Cho đường thẳng a song song với mặt phẳng (P). Lấy hai điểm M; N bất kỳ thuộc a và gọi A; B tương ứng là các hình chiếu của chúng trên (P) (H.7.78).

Giải thích vì sao ABNM là một hình chữ nhật và M, N có cùng khoảng cách đến (P).

HĐ2 trang 55 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Vì A, B lần lượt là các hình chiếu của M, N trên (P) nên AM  (P), BN  (P).

Do đó AM // BN hay A, B, M, N cùng thuộc một mặt phẳng.

Vì MN // (P) và (ABNM)  (P) = AB nên MN // AB.

Vì AM // BN và MN // AB nên ABNM là hình bình hành.

Mặt khác AM  (P) nên AM  AB. Do đó ABNM là hình chữ nhật.

Vì ABNM là hình chữ nhật nên AM = BN nên M, N có cùng khoảng cách đến (P).

Giải Toán 11 trang 56 Tập 2

HĐ3 trang 56 Toán 11 Tập 2: a) Cho hai đường thẳng m và n song song với nhau. Khi một điểm M thay đổi trên m thì khoảng cách từ nó đến đường thẳng n có thay đổi hay không?

b) Cho hai mặt phẳng song song (P) và (Q) và một điểm M thay đổi trên (P) (H.7.79). Hỏi khoảng cách từ M đến (Q) thay đổi thế nào khi M thay đổi.

HĐ3 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

a) Khi M thay đổi trên m thì khoảng cách từ nó đến đường thẳng n không thay đổi vì m // n.

b) Vì (P) // (Q) nên các đường thẳng trên mặt phẳng (P) đều song song với mặt phẳng (Q).

Khi đó M thay đổi trên (P) thì khoảng cách từ M đến (Q) không thay đổi (dựa vào kết quả của hoạt động 2).

Câu hỏi trang 56 Toán 11 Tập 2: Nếu đường thẳng a thuộc mặt phẳng (P) và mặt phẳng (Q) song song với (P) thì giữa d(a, (Q)) và d((P), (Q)) có mối quan hệ gì?

Lời giải:

Lấy M bất kì thuộc a nằm trong mặt phẳng (P), suy ra M thuộc (P).

Vì a // (Q), khi đó d (a, (Q)) = d(M, (Q)).

Vì (P) // (Q) nên d((P), (Q)) = d(M, (Q)).

Do đó d(a, (Q)) = d((P), (Q)).

Luyện tập 2 trang 56 Toán 11 Tập 2: Cho hình chóp S.ABC có SA  (ABC), SA = h. Gọi M, N, P tương ứng là trung điểm của SA, SB, SC.

a) Tính d((MNP), (ABC)) và d(NP, (ABC)).

b) Giả sử tam giác ABC vuông tại B và AB = a. Tính d(A, (SBC)).

Luyện tập 2 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Luyện tập 2 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Xét tam giác SAB có M là trung điểm của SA, N là trung điểm của SB nên MN là đường trung bình của tam giác SAB suy ra MN // AB, do đó MN // (ABC).

Xét tam giác SBC có N là trung điểm của SB, P là trung điểm của SC nên PN là đường trung bình của tam giác SBC suy ra PN // BC, do đó PN // (ABC).

Vì MN // (ABC) và PN // (ABC) mà MN  PN = N nên (MNP) // (ABC).

Khi đó d((MNP), (ABC)) = d(M, (ABC)).

Vì SA  (ABC) nên MA  (ABC). Do đó d(M, (ABC)) = MA.

Vì M là trung điểm SA nên AM = SA2=h2 .

Do đó d((MNP), (ABC)) = h2 .

Vì PN // (ABC) nên d(NP, (ABC)) = d(N, (ABC)).

Vì MN // (ABC) nên d(N, (ABC)) = d(M, (ABC)) = MA = h2 .

Vậy d(NP, (ABC)) = h2 .

b) Vì ABC là tam giác vuông tại B nên BC  AB.

Vì SA  (ABC) nên SA  BC mà BC  AB nên BC  (SAB), suy ra (SBC)  (SAB).

Kẻ AH  SB tại H.

 Luyện tập 2 trang 56 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Khi đó d(A, (SBC)) = AH.

Vì SA  (ABC) nên SA  AB.

Xét tam giác SAB vuông tại A, AH là đường cao, có

1AH2=1SA2+1AB2=1h2+1a2=a2+h2a2h2AH=aha2+h2.

Vậy d(A, (SBC)) = aha2+h2 .

Giải Toán 11 trang 57 Tập 2

Vận dụng 1 trang 57 Toán 11 Tập 2: Ở một con dốc lên cầu, người ta đặt một khung khống chế chiều cao, hai cột của khung có phương thẳng đứng và có chiều dài bằng 2,28 m. Đường thẳng nối hai chân cột vuông góc với hai đường mép dốc. Thanh ngang được đặt trên đỉnh hai cột. Biết dốc nghiêng 15° so phương nằm ngang. Tính khoảng cách giữa thanh ngang của khung và mặt đường (theo đơn vị mét và làm tròn kết quả đến chữ số thập phân thứ hai). Hỏi cầu này có cho phép xe cao 2,21 m đi qua hay không?

Vận dụng 1 trang 57 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Vận dụng 1 trang 57 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Gọi B là một điểm nằm trên thanh ngang và H là hình chiếu vuông góc xuống mặt dốc.

Vì dốc nghiêng 15° so với phương ngang nên góc giữa cột và mặt phẳng dốc bằng 75°.

Khi đó khoảng cách từ B đến mặt phẳng dốc là BH = 2,28 . sin75° 2,2 (m).

Do đó không cho phép xe cao 2,21 m đi qua.

3. Khoảng cách giữa hai đường thẳng chéo nhau

HĐ4 trang 57 Toán 11 Tập 2: Cho hai đường thẳng chéo nhau a và b. Gọi (Q) là mặt phẳng chứa đường thẳng b và song song với a. Hình chiếu a' của a trên (Q) cắt b tại N. Gọi M là hình chiếu của N trên a (H.7.83).

HĐ4 trang 57 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Mặt phẳng chứa a và a' có vuông góc với (Q) hay không?

b) Đường thẳng MN có vuông góc với cả hai đường thẳng a và b hay không?

c) Nêu mối quan hệ của khoảng cách giữa a, (Q) và độ dài đoạn thẳng MN.

Lời giải:

a) Vì a' là hình chiếu của a trên (Q) nên a và a' thuộc cùng một mặt phẳng. Hơn nữa, mặt phẳng đó chứa phương chiếu là đường thẳng vuông góc với (Q) nên mặt phẳng chứa a và a' vuông góc với (Q).

b) Gọi mặt phẳng chứa a và a' là mặt phẳng (P).

Vì a // (Q) và (P)  (Q) = a' nên a // a'.

Vì MN  a nên MN  a'.

Trong mặt phẳng (P) có MN và phương chiếu vuông góc lên (Q) cùng vuông góc với a nên chúng song song với nhau. Do đó MN  (Q) nên MN  b.

c) Vì a // (Q) nên d(a, (Q)) = d(M, (Q)) = MN (vì MN  (Q)).

Giải Toán 11 trang 58 Tập 2

Khám phá trang 58 Toán 11 Tập 2: Cho đường thẳng a vuông góc với mặt phẳng (P) và cắt (P) tại O. Cho đường thẳng b thuộc mặt phẳng (P). Hãy tìm mối quan hệ giữa khoảng cách giữa a, b và khoảng cách từ Ođến b (H.7.88).

Khám phá trang 58 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Ta có d(O, b) = OH.

Vì a  (P) nên a  OH mà OH  b nên OH là đoạn vuông góc chung của a và b, do đó d(a, b) = OH.

Vậy d(a, b) = d(O, b).

Luyện tập 3 trang 58 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA  (ABCD), SA = a2.

a) Tính khoảng cách từ A đến SC.

b) Chứng minh rằng BD  (SAC).

c) Xác định đường vuông góc chung và tính khoảng cách giữa BD và SC.

Luyện tập 3 trang 58 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Luyện tập 3 trang 58 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Hạ AH  SC tại H. Khi đó d(A, SC) = AH.

Xét tam giác ABC vuông tại B, có AC = AB2+BC2=a2+a2=a2.

Vì SA  (ABCD) nên SA  AC.

Xét tam giác SAC vuông tại A, AH là đường cao, ta có:

1AH2=1SA2+1AC2=12a2+12a2=1a2⇒ AH = a.

Vậy d(A, SC) = a.

b) Do ABCD là hình vuông nên AC  BD.

Vì SA  (ABCD) nên SA  BD mà AC  BD nên BD  (SAC).

c) Gọi O là giao điểm của AC và BD. Vì ABCD là hình vuông nên O là trung điểm của AC, BD.

Kẻ OK  SC tại K.

Vì BD  (SAC) nên BD  OK mà OK  SC nên OK là đường vuông góc chung của BD và SC.

Xét tam giác CHA có O là trung điểm của AC và OK // AH (vì cùng vuông góc với SC) nên K là trung điểm của CH. Do đó OK là đường trung bình của tam giác CHA nên OK = AH2=a2 .

Vậy d(BD, SC) = a2 .

Thảo luận trang 58 Toán 11 Tập 2: Khoảng cách giữa hai hình được nêu trong bài học (điểm, đường thẳng, mặt phẳng) là khoảng cách nhỏ nhất giữa một điểm thuộc hình này và một điểm thuộc hình kia. Hãy thảo luận để làm rõ nhận xét này.

Lời giải:

- Khoảng cách từ một điểm M đến một đường thẳng a là khoảng cách giữa M và hình chiếu H của M trên a.

- Khoảng cách từ điểm M đến mặt phẳng (P) là khoảng cách giữa M và hình chiếu H của M trên mặt phẳng (P).

- Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm M bất kì trên a đến mặt phẳng (P).

- Khoảng cách giữa hai mặt phẳng song (P) và (Q) là khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia.

Mà đường vuông góc là đường ngắn nhất nên khoảng cách giữa hai hình được nêu trong bài học (điểm, đường thẳng, mặt phẳng) là khoảng cách nhỏ nhất giữa một điểm thuộc hình này và một điểm thuộc hình kia.

Bài tập

Giải Toán 11 trang 59 Tập 2

Bài 7.22 trang 59 Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là một hình vuông cạnh a, mặt bên SAD là một tam giác đều và (SAD)  (ABCD).

a) Tính chiều cao của hình chóp.

b) Tính khoảng cách giữa BC và (SAD).

c) Xác định đường vuông góc chung và tính khoảng cách giữa AB và SD.

Lời giải:

Bài 7.22 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Kẻ SE  AD tại E.

Vì (SAD)  (ABCD), (SAD)  (ABCD) = AD mà SE  AD nên SE  (ABCD).

Vì tam giác SAD là tam giác đều cạnh a nên SE = a32 .

Vậy chiều cao của hình chóp bằng a32 .

b) Vì ABCD là hình vuông nên BC // AD, suy ra BC // (SAD).

Khi đó d(BC, (SAD)) = d(B, (SAD)).

Vì ABCD là hình vuông nên AB  AD mà SE  (ABCD) nên SE  AB.

Vì AB  AD và SE  AB nên AB  (SAD).

Do đó d(BC, (SAD)) = d(B, (SAD)) = AB = a.

c) Kẻ AF  SD tại F, mà AB  (SAD) nên AB  AF.

Vì AF  SD và AB  AF nên AF là đường vuông góc chung của AB và SD.

Vì tam giác SAD đều có AF là đường cao nên AF = a32.

Vậy d(AB, SD) = AF = a32 .

Bài 7.23 trang 59 Toán 11 Tập 2: Cho hình hộp chữ nhật ABCD.A'B'C'D'có AA' = a, AB = b, BC = c.

a) Tính khoảng cách giữa CC' và (BB'D'D).

b) Xác định đường vuông góc chung và tính khoảng cách giữa AC và B'D'.

Lời giải:

Bài 7.23 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Kẻ CH  BD tại H.

Vì BB'  (ABCD) nên BB'  CH mà CH  BD nên CH  (BB'D'D).

Vì BB'C'C là hình chữ nhật nên BB' // CC' nên CC' // (BB'D'D).

Khi đó d(CC', (BB'D'D)) = d(C, (BB'D'D)) = CH.

Vì ABCD là hình chữ nhật nên AB = CD = b; AD = BC = c.

Xét tam giác BCD vuông tại C, CH là đường cao nên

1CH2=1BC2+1CD2=1c2+1b2=b2+c2b2c2CH=bcb2+c2.

Vậy d(CC', (BB'D'D)) =bcb2+c2 .

b) Gọi O là giao điểm của AC và BD, O' là giao điểm của A'C' và B'D'.

Do ABCD là hình chữ nhật nên O là trung điểm của AC, BD và A'B'C'D' là hình chữ nhật nên O' là trung điểm của A'C' và B'D'.

Có AA' // CC' và AA' = CC' (do chúng cùng song song và bằng BB’) nên AA'C'C là hình bình hành mà AA'  (ABCD) nên AA'  AC. Do đó AA'C'C là hình chữ nhật.

Do AA'C'C là hình chữ nhật và O là trung điểm của AC, O' là trung điểm của A'C' nên OO'  AC và OO' = AA' = a.

Có BB' // DD' và BB' = DD' (do chúng cùng song song và bằng AA') nên BB'D'D là hình bình hành mà BB'  (ABCD) nên BB'  BD. Do đó BB'D'D là hình chữ nhật.

Vì BB'D'D là hình chữ nhật và O là trung điểm của BD, O' là trung điểm của B'D' nên OO'  B'D'.

Vì OO'  AC và OO'  B'D' nên OO' là đường vuông góc chung của AC và B'D'.

Khi đó d(AC, B'D') = OO' = a.

Bài 7.24 trang 59 Toán 11 Tập 2: Cho tứ diện ABCD có các cạnh đều bằng a. Gọi M, N tương ứng là trung điểm của các cạnh AB, CD. Chứng minh rằng:

a) MN là đường vuông góc chung của AB và CD.

b) Các cặp cạnh đối diện trong tứ diện ABCD đều vuông góc với nhau.

Lời giải:

Bài 7.24 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Xét tam giác ADB có AD = BD = a nên tam giác ADB cân tại D.

Vì M là trung điểm của AB nên DM là trung tuyến.

Vì tam giác ADB cân tại D, DM là trung tuyến nên DM đồng thời là đường cao hay DM  AB.

Xét tam giác ABC có AC = BC = a nên tam giác ABC cân tại C mà CM là trung tuyến nên CM là đường cao hay CM  AB.

Vì DM  AB và CM  AB nên AB  (DCM), suy ra AB  MN.

Xét tam giác ADC có AD = AC = a nên tam giác ACD cân tại A mà AN là trung tuyến nên AN đồng thời là đường cao hay AN  CD.

Xét tam giác BCD có BD = BC = a nên tam giác BCD cân tại B mà BN là trung tuyến nên BN đồng thời là đường cao hay BN  CD.

Vì AN  CD và BN  CD nên CD  (ABN), suy ra CD  MN.

Vì AB  MN và CD  MN nên MN là đường vuông góc chung của AB và CD.

b) Vì AB  (DCM) nên AB  CD.

Bài 7.24 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Gọi E là trung điểm của BC.

Xét tam giác ABC có AB = AC = a nên tam giác ABC cân tại A mà AE là trung tuyến nên AE đồng thời là đường cao hay AE  BC.

Xét tam giác BDC có BD = CD = a nên tam giác BCD cân tại D mà DE là trung tuyến nên DE đồng thời là đường cao hay DE  BC.

Có AE  BC và DE  BC nên BC  (ADE), suy ra BC  AD.

Gọi F là trung điểm của BD.

Xét tam giác ADB có AB = AD = a nên tam giác ADB cân tại A mà AF là trung tuyến nên AF đồng thời là đường cao hay AF  BD.

Xét tam giác BCD có BC = CD = a nên tam giác BCD cân tại C mà CF là trung tuyến nên CF đồng thời là đường cao hay CF  BD.

Vì AF  BD và CF  BD nên BD  (ACF), suy ra BD  AC.

Bài 7.25 trang 59 Toán 11 Tập 2: Cho hình lập phương ABCD.A'B'C'D' cạnh a.

a) Chứng minh rằng hai mặt phẳng (D'AC)và (BC'A') song song với nhau và DB' vuông góc với hai mặt phẳng đó.

b) Xác định các giao điểm E, F của DB' với (D'AC), (BC'A'). Tính d((D'AC), (BC'A')).

Lời giải:

Bài 7.25 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

a) Vì AA' // CC' và AA' = CC' (do chúng cùng song song và bằng BB') nên AA'C'C là hình bình hành, suy ra AC // A'C' do đó A'C' // (D'AC).

Vì AB // C'D' và AB = C'D' (do chúng cùng song song và bằng CD) nên ABC'D' là hình bình hành suy ra BC' // AD', do đó BC' // (D'AC).

Vì A'C' // (D'AC) và BC' // (D'AC) nên (BC'A') // (D'AC).

Vì ABCD là hình vuông nên AC  BD.

Vì BB'  (ABCD) nên BB'  AC mà AC  BD nên AC  (BB'D), suy ra AC  DB'.

Vì AC // A'C' mà AC  DB' nên A'C'  DB'.

Do AD  (ABB'A') nên AD  A'B.

Vì ABB'A' là hình vuông nên AB'  A'B mà AD  A'B nên A'B  (ADB').

Suy ra A'B  DB'.

Có A'C'  DB' và A'B  DB' nên DB'  (BC'A').

Vì A'D' // BC và A'D' = BC (do chúng cùng song song và bằng AD) nên A'D'CB là hình bình hành, suy ra A'B // D'C mà A'B  DB' nên D'C  DB'.

Có AC  DB' và D'C  DB' nên DB'  (D'AC).

b) Gọi O và O' lần lượt là tâm của hai hình vuông ABCD và A'B'C'D'.

Trong mặt phẳng (BDD'B'), có DB'  D'O = E. Khi đó DB'  (D'AC) = E.

Trong mặt phẳng (BDD'B'), có DB'  BO' = F. Khi đó DB'  (BC'A') = F.

Vì (BC'A') // (D'AC) nên d((D'AC), (BC'A')) = d(E, (BC'A')) = EF (vì DB'  (BC'A')).

Vì DB'  (BC'A') nên DB'  BO' và DB'  (D'AC) nên DB'  D'O, suy ra BO' // D'O.

Xét tam giác DBF, có OE // BF nên theo định lí Ta lét, ta có: DEEF=DOOB=1DE=EF .

Xét tam giác B'D'E có O'F // D'E nên theo định lí Ta lét, ta có: B'FEF=B'O'O'D'=1B'F = EF.

Do đó B'F = EF = DE EF = 13DB' .

Xét tam giác BCD vuông tại C, có BD2=BC2+CD2=a2+a2=2a2.

Xét tam giác B'BD vuông tại B, có B'D2=B'B2+BD2=a2+2a2=3a2

B'D=a3EF=a33

Vậy d((D'AC), (BC'A')) = a33 .

Bài 7.26 trang 59 Toán 11 Tập 2: Giá đỡ ba chân ở Hình 7.90 đang được mở sao cho ba gốc chân cách đều nhau một khoảng cách bằng 110 cm. Tính chiều cao của giá đõ, biết các chân của giá đỡ dài 129 cm.

Bài 7.26 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Lời giải:

Bài 7.26 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Giá đỡ ba chân ở Hình 7.90 có dạng hình chóp đều S.ABC.

Vì S.ABC là hình chóp đều nên SH  (ABC) với H là trọng tâm của tam giác ABC.

Gọi AH  BC tại M. Khi đó M là trung điểm của BC.

Vì ABC là tam giác đều cạnh 110 cm, AM là đường cao nên AM = 11032 (cm).

Vì AH = 23AM = 11032 (cm).

Xét tam giác SHA vuông tại H, có:

SH = SA2AH2=1292110332=378233112,28 (cm).

Vậy chiều cao giá đỡ khoảng 112,28 cm.

Bài 7.27 trang 59 Toán 11 Tập 2: Một bể nước có đáy thuộc mặt phẳng nằm ngang. Trong trường hợp này, độ sâu của bể là khoảng cách giữa mặt nước và đáy bể. Giải thích vì sao để đo độ sâu của bể, ta có thể thả quả dọi chạm đáy bể và đo chiều dài của đoạn dây dọi nằm trong bể nước.

Lời giải:

Bài 7.27 trang 59 Toán 11 Tập 2 | Kết nối tri thức Giải Toán 11

Giả sử mặt phẳng đáy bể nước là mặt phẳng (P), mặt phẳng mặt nước là mặt phẳng (Q), dây dọi là đường thẳng MH.

Khi đó ta có (P) // (Q). Mà d((P), (Q)) = d(M, (P)), với M  (Q).

Lại có, sợi dây của quả dọi có phương vuông góc với mặt phẳng nước và đáy bể, do đó MH  (P).

Khi đó d(M, (P)) = MH, MH chính là độ dài đoạn dây dọi nằm trong bể nước.

Vậy để đo độ sâu của bể, ta có thể thả quả dọi chạm đáy bể và đo chiều dài của đoạn dây dọi nằm trong bể nước.

Xem thêm các bài giải SGK Toán lớp 11 Kết nối tri thức hay, chi tiết khác:

Bài 28: Biến cố hợp, biến cố giao, biến cố độc lập

Lý thuyết Khoảng cách

1. Khoảng cách từ một điểm đến một đường thẳng, đến một mặt phẳng

Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 1)

- Khoảng cách từ một điểm M đến một đường thẳng a, kí hiệu là d(M, a), là khoảng cách giữa M và hình chiếu H của M trên a.

- Khoảng cách từ một điểm M đến một mặt phẳng (P), kí hiệu d(M, (P)), là khoảng cách giữa M và hình chiếu H của M trên (P).

Chú ý: d(M, a) = 0 khi và chỉ khi Ma;d(M,(P))=0 khi và chỉ khi M(P).

Nhận xét: Khoảng cách từ M đến đường thẳng a (mặt phẳng (P)) là khoảng cách nhỏ nhất giữa M và một điểm thuộc a (thuộc (P)).

Chú ý: Khoảng cách từ đỉnh đến mặt phẳng chứa mặt đáy của một hình chóp được gọi là chiều cao của hình chóp đó.

2. Khoảng cách giữa các đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song

- Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a, kí hiệu d(a, (P)), là khoảng cách từ một điểm bất kì trên a đến (P).

- Khoảng cách giữa hai mặt phẳng song song (P) và (Q), kí hiệu d((P), (Q)), là khoảng cách từ một điểm bất kì thuộc mặt phẳng này đến mặt phẳng kia.

- Khoảng cách giữa hai đường thẳng song song m và n, kí hiệu d(m, n), là khoảng cách từ một điểm thuộc đường thẳng này đến đường thẳng kia.

Chú ý: Khoảng cách giữa hai đáy của một hình lăng trụ được gọi là chiều cao của hình lăng trụ đó.

3. Khoảng cách giữa hai đường thẳng chéo nhau

Đường thẳng Δ cắt hai đường thẳng chéo nhau a, b và vuông góc với cả hai đường thẳng đó được gọi là đường vuông góc chung của a và b.

Nếu đường vuông góc chung Δ cắt a, b tương ứng tại M, N thì độ dài đoạn thẳng MN được gọi là khoảng cách giữa hai đường thẳng chéo nhau a, b.

Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 2)

Nhận xét:

- Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó đến mặt phẳng song song với nó và chứa đường thẳng còn lại.

Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 3)

- Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song, tương ứng chứa hai đường thẳng đó.

Lý thuyết Khoảng cách (Kết nối tri thức 2024) hay, chi tiết | Toán lớp 11 (ảnh 4)

Đánh giá

0

0 đánh giá