Cho hàm số f(x) = x3 + 4x2 + 5. Giải bất phương trình f’(x) – f’’(x) ≥ 0

184

Với giải Bài 35 trang 78 SBT Toán lớp 11 Cánh diều chi tiết trong Bài 3: Đạo hàm cấp hai giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán 11 Bài 3: Đạo hàm cấp hai

Bài 35 trang 78 SBT Toán 11 Tập 2Cho hàm số f(x) = x3 + 4x2 + 5. Giải bất phương trình f’(x) – f’’(x) ≥ 0.

Lời giải:

Xét hàm số f(x) = x3 + 4x2 + 5. Ta có:

f’(x) = (x3 + 4x2 + 5)’ = 3x2 + 8x;

f’’(x) = (3x2 + 8x)’ = 6x + 8.

Khi đó, f’(x) – f’’(x) = 3x2 + 8x – 6x – 8 = 3x2 + 2x – 8.

Để f’(x) – f’’(x) ≥ 0 thì 3x2 + 2x – 8 ≥ 0

3x4x+20x43x2.

Vậy bất phương trình có tập nghiệm S=;243;+.

Đánh giá

0

0 đánh giá