Giải SBT Toán 8 trang 7 Tập 2 Kết nối tri thức

665

Với lời giải SBT Toán 8 trang 7 Tập 2 Bài 22: Tính chất cơ bản của phân thức đại số sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán 8 Bài 22: Tính chất cơ bản của phân thức đại số

Bài tập 6.8 trang 7 SBT Toán 8 Tập 2: Rút gọn phân thức xx25x25 rồi tìm đa thức A trong đẳng thức xx25x25=xA

Lời giải:

Điều kiện xác định của phân thức xx25x25 là: 5x2 – 5 ≠ 0 hay 5(x2 – 1) ≠ 0, điều đó có nghĩa là 5(x – 1)(x + 1) ≠ 0 hay x ≠ 1 và x ≠ –1.

Với điều kiện trên, ta có:

xx25x25=x1x5x21=x1x5x1x+1=x1x51xx+1

=x1x:1x51xx+1:1x=x5x+1=x5x5

Do đó, ta có: xx25x25=x5x5=xA

Vậy A = –5x – 5.

Bài tập 6.9 trang 7 SBT Toán 8 Tập 2: Rút gọn phân thức 2x+2xy+y+y2y3+3y2+3y+1

Lời giải:

Ta có:

2x+2xy+y+y2y3+3y2+3y+1=2x+2xy+y+y2y3+1+3y2+3y

=2x1+y+y1+yy+1y2y+1+3yy+1

=y+12x+yy+1y2y+1+3y=y+12x+yy+1y2+2y+1

=2x+yy2+2y+1=2x+yy+12

Bài tập 6.10 trang 7 SBT Toán 8 Tập 2: Rút gọn rồi tính giá trị của các phân thức sau

a) P=2x2+2x2x2x34xx+1 với x = 0,5;

b) Q=x3x2y+xy2x3+y3 với x = –5; y = 10.

Lời giải:

a)

Ta có:

P=2x2+2x2x2x34xx+1=2xx+12x2xx24x+1

=2xx+1x22xx2x+2x+1

=2x2x+2=2x4x+2

Thay x = 0,5 vào P ta có: P=2.0,540,5+2=1,2

b)

Ta có:

Q=x3x2y+xy2x3+y3=xx2xy+y2x+yx2xy+y2=xx+y

Thay x = –5 và y = 10 vào Q ta có: Q=xx+y=55+10=1

Bài tập 6.11 trang 7 SBT Toán 8 Tập 2: Quy đồng mẫu thức các phân thức sau

a)2514x2y1421xy5 ;

b) 4x42xx+3x33xx+1.

Lời giải:

a)

Mẫu thức chung là: 42x2y5

Ta có: 42x2y5 : 14x2y = 3y4 ; 42x2y5 : 21xy5 = 2x

Quy đồng mẫu thức ta có:

2514x2y=25.3y414x2y.3y4=75y442x2y5

1421xy5=14.2x21xy5.2x=28x42x2y5.

b) Ta có 4x42xx+3=22x22xx+3=2x2xx+3.

Mẫu thức chung: 3x(x + 3)(x + 1).

Ta có:

3x(x + 3)(x + 1) : x(x + 3) = 3(x + 1)

3x(x + 3)(x + 1) : 3x(x + 1) = (x + 3)

Quy đồng mẫu thức ta có:

2x2xx+3=2x2.3x+1xx+3.3x+1=32x2x+13xx+3x+1

=6x1x+13xx+3x+1=6x213xx+3x+1;

x33xx+1=x3.x+33xx+1.x+3=x3x+33xx+3x+1=x293xx+3x+1

Bài tập 6.12 trang 7 SBT Toán 8 Tập 2: Tìm mẫu thức chung của ba phân thức sau

1x2x; x1x31x2+x+1.

Quy đồng mẫu thức ba phân thức đã cho với mẫu thức chung tìm được.

Lời giải:

Ta có:

1x2x=1xx1

x1x3=x1x1+x+x2=xx11+x+x2

1x2+x+1

Mẫu thức chung: x(x – 1)(1 + x + x2)

Quy đồng mẫu thức ta có:

1x2x=1xx1=x2+x+1xx1x2+x+1;

x1x3=x1x1+x+x2=xx11+x+x2=x2xx11+x+x2

1x2+x+1=xx1xx1x2+x+1.

Bài tập 6.13 trang 7 SBT Toán lớp 8 Tập 2: Quy đồng mẫu thức các phân thức sau

a) 1x2y; 1y2z1z2x;

b) 11x; 1x+11x2+1.

Lời giải:

a)

Mẫu thức chung: x2y2z2

Quy đồng mẫu thức ta có:

1x2y=yz2x2y.yz2=yz2x2y2z2

1y2z=x2zy2z.x2z=x2zx2y2z2

1z2x=xy2z2x.xy2=xy2x2y2z2.

b)

Mẫu thức chung: (1 – x)(x + 1)(x2 + 1) = (1 – x2)(x2 + 1) = 1 – x4.

Quy đồng mẫu thức ta có:

11x=x+1x2+11xx+1x2+1=x+1x2+11x4;

1x+1=1xx2+11xx+1x2+1=1xx2+11x4;

1x2+1=1xx+11xx+1x2+1=1xx+11x4=1x21x4.

Bài tập 6.14 trang 7 SBT Toán lớp 8 Tập 2: Cho x, y, z thỏa mãn: x + y + z = 0 và x ≠ 0, y ≠ z. Hãy rút gọn phân thức xy2z2

Lời giải:

Ta có: xy2z2=xyzy+z(1)

Vì x + y + z = 0 nên ta có x = – y – z.

Thay vào (1) ta có:

xy2z2=yzyzy+z=y+zyzy+z=1yz=1zy.

Đánh giá

0

0 đánh giá