Với lời giải SBT Toán 8 trang 44 Tập 1 Bài tập cuối chương 3 sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:
Giải SBT Toán 8 Bài tập cuối chương 3
a) Hỏi tứ giác ANMP là hình gì?
b) Hỏi M ở vị trí nào để tứ giác ANMP là một hình thoi?
c) Tam giác ABC phải thoả mãn điều kiện gì để tứ giác ANMP là một hình chữ nhật?
d) Khi tam giác ABC thoả mãn điều kiện nói trong câu c, tìm vị trí của M để NP ngắn nhất.
e) Tam giác ABC thoả mãn điều kiện gì và M ở vị trí nào trên cạnh BC để tứ giác ANMP là một hình vuông?
Lời giải:
a) Ta có NM // AC hay MN // AP (do P ∈ BC)
MP // AB hay MP // AN (do N ∈ AB)
Tứ giác ANMP có MN // AP và MP // AN nên là hình bình hành.
b) Để ANMP là hình thoi thì tia AM phải là tia phân giác của góc A.
c) Để ANMP là hình chữ nhật thì hình bình hành ANMP phải có 1 góc vuông.
Khi đó thì góc A phải vuông tức là tam giác ABC vuông tại A.
d) Khi góc A là góc vuông, ANMP là hình chữ nhật nên AM = NP.
Vậy NP ngắn nhất khi AM ngắn nhất, lúc này AM là đường cao của tam giác ABC.
e) Tứ giác ANMP là hình vuông thì nó phải là hình chữ nhật và là hình thoi tức là tam giác ABC vuông tại A và có tia AM là phân giác của góc A.
Hỏi khi góc A của tam giác ABC là góc tù thì công thức đó thay đổi thế nào?
Lời giải:
Kí hiệu S là diện tích tam giác.
• Xét trường hợp tam giác ABC nhọn, ta có
Suy ra
Chứng minh tương tự, ta có: và .
Suy ra, (do H nằm bên trong tam giác ABC)
Do đó .
• Khi góc A là góc tù, H nằm trong góc đối đỉnh với góc BAC, ta có
SABC = SHBC – SHAB – SHAC nên ta được .
n – giác là hình tạo bởi n đoạn thẳng (gọi là cạnh của n – giác) A0A1, A1A2, …, An–1An, AnA0 (các điểm A0, A1, ..., An gọi là đỉnh của n – giác), trong đó không có ba đỉnh nào cùng nằm trên một đường thẳng và hình nằm về một phía đối với mỗi đường thẳng chứa một cạnh.
Khi n = 3, 4, 5, 6, 7, 8, n − giác còn được gọi lần lượt là tam giác, tứ giác, ngũ giác, lục giác, thất giác, bát giác.
Hai đỉnh của n – giác gọi là kề nhau nếu chúng là hai đỉnh của một cạnh của n – giác.
Đoạn thẳng nối hai đỉnh không kề nhau của n – giác gọi là một đường chéo của n – giác.
a) Chứng minh qua mỗi đỉnh của n – giác, có n − 3 đường chéo của n – giác. Từ đó suy ra n − giác có đường chéo.
b) Hãy vẽ tất cả các đường chéo của một ngũ giác (n = 5).
Lời giải:
a) Không có đường chéo nào của n – giác nối một đỉnh cho trước với chính đỉnh đó và với hai đỉnh kề với đỉnh đó nên có n − 3 đường chéo của n – giác đi qua đỉnh đang xét.
Tính theo cách đó thì n – giác có n(n – 3) đường chéo, nhưng mỗi đường chéo đã được tính hai lần (mỗi đường chéo có hai đầu mút là hai đỉnh của n – giác) nên n – giác có tất cả đường chéo.
b) Giả sử ta có ngũ giác ABCDE, khi đó ngũ giác này có đường chéo, đó là: AC, AD, BD, BE, CE (hình vẽ).
a) Kẻ n – 3 đường chéo của n – giác cùng đi qua đỉnh A0, thì n – giác được chia thành bao nhiêu tam giác, từ đó suy ra tổng các góc của n – giác bằng (n – 2).180°.
b) Góc kề bù với một góc tại một đỉnh của n – giác gọi là một góc ngoài tại đỉnh đó của n – giác. Với mỗi đỉnh của một n − giác, xét một góc ngoài tại đỉnh đó của n – giác thì hỏi tổng n góc ngoài đó bằng bao nhiêu?
Lời giải:
a) Kẻ n – 3 đường chéo đi qua một đỉnh cho trước của n – giác thì chúng chia n – giác thành n – 2 tam giác.
Tổng các góc của n – giác là tổng các góc của các tam giác đó nên tổng đó bằng (n – 2).180°.
b) Nếu một góc của n – giác có số đo là α° thì góc ngoài tại đỉnh đó có số đo 180° – αº.
Từ đó tổng n góc ngoài có số đo là n.180° – tổng các góc của n - giác tức là n.180° – (n – 2).180° = 2.180° = 360°.
a) Tính số đo mỗi góc của một n − giác đều.
b) Tứ giác đều là hình gì?
Lời giải:
a) Theo kết quả của câu a, Bài 3.31, trang 45, SBT Toán 8 Tập Một, tổng số đo các góc của n – giác bằng (n – 2).180°.
Mà n – giác đều có n góc bằng nhau nên số đo mỗi góc của n – giác đều là
b) Tứ giác đều là hình vuông và hình vuông là một tứ giác đều.
Xem thêm lời giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Câu 1 trang 43 sách bài tập Toán 8 Tập 1: Trong các câu sau, câu nào đúng?...
Câu 2 trang 43 sách bài tập Toán 8 Tập 1: Trong các câu sau, câu nào đúng?...
Câu 3 trang 43 sách bài tập Toán 8 Tập 1: Tìm câu sai trong các câu sau:....
Câu 4 trang 43 sách bài tập Toán 8 Tập 1: Cho các câu sau:....
Xem thêm giải sách bài tập Toán lớp 8 Kết nối tri thức hay, chi tiết khác:
Bài 14: Hình thoi và hình vuông
Bài 15: Định lí Thalès trong tam giác