Với giải HĐ2 trang 26 Chuyên đề Toán 10 Kết nối tri thức chi tiết trong Bài 3: Phương pháp quy nạp toán học giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 10. Mời các bạn đón xem:
Giải bài tập Chuyên đề Toán lớp 10 Bài 3: Phương pháp quy nạp toán học
HĐ2 trang 26 Chuyên đề Toán 10: Xét đa thức p(n) = n2 – n + 41.
a) Hãy tính p(1), p(2), p(3), p(4), p(5) và chứng tỏ rằng các kết quả nhận được đều là số nguyên tố.
b) Hãy đưa ra một dự đoán cho p(n) trong trường hợp tổng quát.
Lời giải:
a) p(1) = 41, p(2) = 43, p(3) = 47, p(4) = 53, p(5) = 61. Do đó p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố.
b) Từ việc p(1), p(2), p(3), p(4), p(5) đều là các số nguyên tố ta có thể đưa ra dự đoán p(n) là số nguyên tố với mọi n > 1. Tuy nhiên, khẳng định này là một khẳng định sai. Mặc dù khẳng định này đúng với n = 1, 2,..., 40, nhưng nó lại sai khi n= 41. Thật vậy, với n= 41 ta có p(41) = 412 là hợp số (vì nó chia hết cho 41).
Xem thêm các bài giải Chuyên đề Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 26 Chuyên đề Toán 10: Hãy quan sát các đẳng thức sau:...
Luyện tập 1 trang 27 Chuyên đề Toán 10: Chứng minh rằng với mọi số tự nhiên n ≥ 1, ta có:...
Luyện tập 2 trang 28 Chuyên đề Toán 10: Chứng minh rằng với mọi số tự nhiên n ≥ 2, ta có đằng thức:...
Vận dụng trang 30 Chuyên đề Toán 10: Lãi suất gửi tiết kiệm trong ngân hàng thường được tính theo thể thức lãi kép theo định kì. Theo thề thức này, nếu đến kì hạn người gửi không rút lãi ra thì tiền lãi được tính vào vốn của kì kế tiếp. Giả sử một người gửi số tiền A với lãi suất r không đổi trong mỗi kì....
Bài 2.1 trang 30 Chuyên đề Toán 10: Sử dụng phương pháp quy nạp toán học, chứng minh các đẳng thức sau đúng với mọi số tự nhiên n ≥ 1...
Bài 2.2 trang 30 Chuyên đề Toán 10: Mỗi khẳng định sau là đủng hay sai? Nếu em nghĩ là nó đủng, hãy chứng minh nó. Nếu em nghĩ là nó sai, hãy đưa ra một phản ví dụ....
Bài 2.3 trang 30 Chuyên đề Toán 10: Chứng minh rằng n3 – n + 3 chia hết cho 3 với mọi số tự nhiên n ≥ 1...
Bài 2.4 trang 30 Chuyên đề Toán 10: Chứng minh rằng n2 – n + 41 là số lẻ với mọi số nguyên dương n....
Bài 2.5 trang 30 Chuyên đề Toán 10: Chứng minh rằng nếu x > –1 thì (1 + x)n ≥ 1+ nx với mọi số tự nhiên n.
Bài 2.6 trang 30 Chuyên đề Toán 10: Cho tổng Sn = ....
Bài 2.7 trang 30 Chuyên đề Toán 10: Sừ dụng phương pháp quy nạp toán học, chứng minh rằng số đường chéo của một đa giác n cạnh (n ≥ 4) là ...
Bài 2.8 trang 30 Chuyên đề Toán 10:...
Ta sẽ “lập luận” bằng quy nạp toán học đề chỉ ra rằng: “Mọi con mèo đều có cùng màu”. Ta gọi P(n) với n nguyên dương là mệnh đề sau: “Mọi con mèo trong một đàn gồm n con đều có cùng màu”....