Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính theo a khoảng cách

2.1 K

Với giải Bài 7.27 trang 37 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 26: Khoảng cách giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 26: Khoảng cách

Bài 7.27 trang 37 SBT Toán 11 Tập 2: Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính theo a khoảng cách:

a) Giữa hai đường thẳng AB và C'D'.

b) Giữa đường thẳng AC và mặt phẳng (A'B'C'D').

c) Từ điểm A đến đường thẳng B'D'.

d) Giữa hai đường thẳng AC và B'D'.

Lời giải:

Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a

a) Do ABCD.A'B'C'D' là hình lập phương nên các mặt là hình vuông.

Vì ABCD là hình vuông nên AB BC mà AB BB' (do BB' (ABCD)), từ đó suy ra AB (BCC'B'), suy ra BC' AB.

Vì A'B'C'D' là hình vuông nên C'D' B'C' mà CC' C'D' (do CC' (A'B'C'D')) nên C'D' (BCC'B'), suy ra BC' C'D'.

Xét tam giác BB'C' vuông tại B', có BC' = BB'2+B'C'2=a2+a2=a2.

Vì BC' AB và BC' C'D' nên d(AB, C'D') = BC' = a2.

b) Ta có AA' // CC' và AA' = CC' (do AA'; CC' cùng song song và bằng BB').

Do đó ACC'A' là hình bình hành, suy ra AC // A'C'. Do đó AC // (A'B'C'D').

Vì AC // (A'B'C'D') nên d(AC, (A'B'C'D')) = d(A, (A'B'C'D')) = AA' = a.

c) Gọi O' là giao điểm của A'C' và B'D'.

Vì AA' (A'B'C'D') nên AA' B'D'.

Vì A'B'C'D' là hình vuông nên A'C' B'D' mà AA' B'D' nên B'D' (AA'C'C), suy ra AO' B'D'.

Xét tam giác A'B'C' vuông tại B', có: A'C' = A'B'2+B'C'2=a2+a2=a2.

Do A'B'C'D' là hình vuông và O' là giao điểm của A'C' và B'D' nên O' là trung điểm của A'C'. Do đó A'O' = A'C'2=a22.

Xét tam giác AA'O' vuông tại A', có AO' = AA'2+A'O'2=a2+2a24=a62.

Vì AO' B'D' nên d(A, B'D') = AO' = a62 .

d) Vì AC // A'C' nên AC // ((A'B'C'D')) mà B'D' (A'B'C'D').

Do đó d(AC, B'D') = d(AC, (A'B'C'D')) = d(A, (A'B'C'D')) = AA' = a.

Đánh giá

0

0 đánh giá