Cho hình chóp S.ABCD có đáy là hình vuông tâm O và tất cả các cạnh của hình chóp đều bằng a

8.4 K

Với giải Bài 7.4 trang 26 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 22: Hai đường thẳng vuông góc giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 22: Hai đường thẳng vuông góc

Bài 7.4 trang 26 SBT Toán 11 Tập 2: Cho hình chóp S.ABCD có đáy là hình vuông tâm O và tất cả các cạnh của hình chóp đều bằng a. Gọi M, N lần lượt là trung điểm của cạnh SA, AB.

a) Tính góc giữa các cặp đường thẳng sau: MN và SD; MO và SB.

b) Tính tang của góc giữa hai đường thẳng SN và BC.

Lời giải:

Cho hình chóp S.ABCD có đáy là hình vuông tâm O

a) Hình chóp S.ABCD có tất cả các cạnh bằng a và đáy ABCD là hình vuông nên

SA = SB = SC = SD = AB = BC = CD = DA = a.

Xét tam giác ADB vuông tại A, có BD2 = AD2 + AB2 = a2 + a2 = 2a2.

Mà SB2 + SD2 = a2 + a2 = 2a2. Do đó SB2 + SD2 = BD2 nên tam giác SBD vuông tại S.

Vì M, N lần lượt là trung điểm của cạnh SA, AB nên MN là đường trung bình của tam giác SAB, do đó MN // SB.

Khi đó (MN, SD) = (SB, SD) = 90°.

Vì O là giao điểm của AC và BD, ABCD là hình vuông nên O là trung điểm AC, BD.

Xét tam giác SAC có M là trung điểm SA, O là trung điểm AC nên MO là đường trung bình, suy ra MO // SC.

Khi đó (MO, SB) = (SC, SB) = BSC^ = 60o (do tam giác SBC là tam giác đều).

b) Xét tam giác ABC có O là trung điểm AC, N là trung điểm AB nên ON là đường trung bình, suy ra ON // BC.

Vì ON // BC nên (SN, BC) = (SN, ON) = SNO^ .

Vì tam giác SAC có SA = SC = a nên tam giác SAC cân tại S mà SO là trung tuyến nên SO là đường cao.

Vì BD2 = 2a2 và ABCD là hình vuông nên AC = BD = a2 AO = OC = a22 .

Xét tam giác SOC vuông tại O, có:

SC2 = SO2 + OC2 a2 = SO2 + a222SO = a22.

Vì ON là đường trung bình của tam giác ABC nên ON = BC2=a2.

Xét tam giác đều SAB có SN là trung tuyến đồng thời là đường cao hay SN AB.

Xét tam giác vuông SNB vuông tại N, ta có:

SN2 + NB2 = SB2 SN2 + a22 = a2 SN2 = 3a24

Lại có SO2 + ON2 = a222+ a22 = 3a24 . Do đó tam giác SON vuông tại O.

Xét tam giác vuông SON vuông tại O có tanSNO^ = SOON = 2.

Vậy tang của góc giữa hai đường thẳng SN và BC là 2 .

Đánh giá

0

0 đánh giá