Giải Toán 8 trang 110 Tập 1 Cánh diều

329

Với lời giải Toán 8 trang 110 Tập 1 chi tiết Bài 5: Hình chữ nhật sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 5: Hình chữ nhật

Luyện tập 1 trang 110 Toán 8 Tập 1: Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O. Gọi M, N lần lượt là hình chiếu của O trên AB, BC. Chứng minh MN=12AC.

Lời giải:

Luyện tập 1 trang 110 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Do M, N lần lượt là hình chiếu của O trên AB, BC nên OM  AB và ON  BC.

Xét tứ giác OMBN có OMB^=MBN^=BNO^=90°.

Do đó tứ giác OMBN là hình chữ nhật.

Suy ra OB = MN.

Do ABCD là hình chữ nhật nên OB = OD = MN=12AC

Khi đó MN=OB=12AC.

Vậy MN=12AC.

III. Dấu hiệu nhận biết

Hoạt động 3 trang 110 Toán 8 Tập 1: a) Cho hình bình hành ABCD có A^=90°. ABCD có phải là hình chữ nhật hay không?

b) Cho hình bình hành ABCD có hai đường chéo AC và BD bằng nhau (Hình 50).

• Hai tam giác ABC và DCB có bằng nhau hay không? Từ đó, hãy so sánh ABC^  DCB^.

• ABCD có phải là hình chữ nhật hay không?

Hoạt động 3 trang 110 Toán 8 Tập 1 Cánh diều | Giải Toán 8

Lời giải:

a) Do ABCD là hình bình hành nên AB // CD và C^=A^=90°, B^=D^.

Mặt khác do AB // CD nên A^+D^=180° 

Suy ra D^=180°A^=180°90°=90°

Do đó tứ giác ABCD có A^=C^=B^=D^=90° nên là hình chữ nhật.

b) • Do ABCD là hình bình hành nên AB = CD và AB // CD.

Xét ΔABC và ΔDCB có:

BC là cạnh chung;

AB = DC (chứng minh trên);

AC = DB (giả thiết)

Do đó ΔABC = ΔDCB (c.c.c)

Suy ra ABC^=DCB^ (hai góc tương ứng)

• Do AB // CD nên ABC^+DCB^=180°

Suy ra ABC^+ABC^=180°

            2ABC^=180°

             ABC^=90°.

Theo kết quả của câu a, hình bình hành ABCD có 1 góc vuông nên là hình chữ nhật.

Đánh giá

0

0 đánh giá