Giải Toán 8 trang 33 Tập 1 Kết nối tri thức

263

Với lời giải Toán 8 trang 33 Tập 1 chi tiết trong Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu sách Kết nối tri thức giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải Toán 8 Bài 6: Hiệu hai bình phương. Bình phương của một tổng hay một hiệu

Bài 2.1 trang 33 Toán 8 Tập 1: Những đẳng thức nào sau đây là hằng đẳng thức?

a)      x+2=3x+1

b)      2x(x+1)=2x2+2x

c)      (a+b)a=a2+ba

d)      a2=2a+1

Phương pháp giải

Hằng đẳng thức là đẳng thức mà hai vế luôn cùng nhận một giá trị khi thay các chữ trong đẳng thức bằng các số tùy ý.

Lời giải:

a)      x+2=3x+1 không là hằng đẳng thức vì khi ta thay x=0 thì hai vế của đẳng thức không bằng nhau.

b)      2x(x+1)=2x2+2x là hằng đẳng thức.

c)      (a+b)a=a2+balà hằng đẳng thức.

d)      a2=2a+1 không là hằng đẳng thức vì khi ta thay a=0 thì hai vế của đẳng thức không bằng nhau.

Bài 2.2 trang 33 Toán 8 Tập 1: Thay Giải SGK Toán 8 Bài 6 (Kết nối tri thức): Hiệu hai bình phương. Bình phương của một tổng hay một hiệu (ảnh 2) bằng biểu thức thích hợp.

a)      (x3y)(x+3y)=x2?;

b)      (2xy)(2x+y)=4?y2;

c)      x2+8xy+?=(?+4y)2;

d)      ?12xy+9y2=(2x?)2.

Phương pháp giải

Sử dụng ba hằng đẳng thức:

+)A2B2=(A+B)(AB)+)(A+B)2=A2+2AB+B2+)(AB)2=A22AB+B2

Lời giải:

a)      (x3y)(x+3y)=x29y2;

b)      (2xy)(2x+y)=4x2y2;

c)      x2+8xy+16y2=(x+4y)2;

d)      4x212xy+9y2=(2x3y)2

Bài 2.3 trang 33 Toán 8 Tập 1: Tính nhanh:

a)      54.66;

b)      2032.

Phương pháp giải

Sử dụng 2 hằng đẳng thức:

+)A2B2=(A+B)(AB)+)(A+B)2=A2+2AB+B2

Lời giải:

a)      54.66=(606).(60+6)=60262=360036=3564

b)      2032=(200+3)2=2002+2.200.3+32=40000+600+9=40609

Bài 2.4 trang 33 Toán 8 Tập 1: Viết các biểu thức sau dưới dạng bình phương của một tổng hoặc một hiệu:

a)      x2+4x+4

b)      16a216ab+4b2

Phương pháp giải

Sử dụng 2 hằng đẳng thức:

+)(A+B)2=A2+2AB+B2+)(AB)2=A22AB+B2

Lời giải:

a)      x2+4x+4=x2+2.x.2+22=(x+2)2

b)      16a216ab+4b2=(4a)22.4a.2b+(2b)2=(4a2b)2

Bài 2.5 trang 33 Toán 8 Tập 1: Rút gọn các biểu thức sau:

a)      (x3y)2(x+3y)2

b)      (3x+4y)2+(4x3y)2

Phương pháp giải 

Sử dụng ba hằng đẳng thức:

+)A2B2=(A+B)(AB)+)(A+B)2=A2+2AB+B2+)(AB)2=A22AB+B2

Lời giải:

a)     (x3y)2(x+3y)2=(x3y+x+3y).(x3yx3y)=(2x).(6y)=12xy

b)       

(3x+4y)2+(4x3y)2=(3x)2+2.3x.4y+(4y)2+(4x)22.4x.3y+(3y)2=9x2+24xy+16y2+16x224xy+9y2=(9x2+16x2)+(24xy24xy)+(16y2+9y2)=25x2+25y2

Bài 2.6 trang 33 Toán 8 Tập 1: Chứng minh rằng với mọi số tự nhiên n, ta có: (n+2)2n2 chia hết cho 4.

Phương pháp giải 

Sử dụng hằng đẳng thức a2b2=(a+b)(ab)

Nếu 2 số nguyên a, b thỏa mãn a chia hết cho 4 thì a.b chia hết cho 4.

Lời giải:

Ta có:

(n+2)2n2=(n+2n).(n+2+n)=2.(2n+2)=2.2.(n+1)=4.(n+1).

Vì 44 nên 4(n+1)4 với mọi số tự nhiên n. 

Đánh giá

0

0 đánh giá