Với lời giải Toán 11 trang 104 Tập 1 chi tiết trong Bài 3: Đường thẳng và mặt phẳng song song sách Cánh diều giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải Toán 11 Bài 3: Đường thẳng và mặt phẳng song song
Luyện tập 4 trang 104 Toán 11 Tập 1: Trong Hình 56, hai mặt tường của căn phòng gợi nên hình ảnh hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến b, mép cột gợi nên hình ảnh đường thẳng a. Cho biết đường thẳng a có song song với giao tuyến b hay không.
Lời giải:
Ta có: a // (P);
a // (Q);
(P) ∩ (Q) = b.
Do đó theo hệ quả định lí 2 ta có a // b.
Bài tập
Bài 1 trang 104 Toán 11 Tập 1: Trong phòng họp của lớp, hãy nêu những hình ảnh về đường thẳng song song với mặt phẳng.
Lời giải:
Gợi ý những hình ảnh về đường thẳng song song với mặt phẳng: đường chân tường và trần nhà; mép cột tường và bức tường; …
Bài 2 trang 104 Toán 11 Tập 1: Trong Hình 57, khi cắt bánh sinh nhật, mặt cắt và mặt khay đựng bánh lần lượt gợi nên hình ảnh mặt phẳng (Q) và mặt phẳng (P); mép trên và mép dưới của lát cắt lần lượt gợi nên hình ảnh hai đường thẳng a và b trong đó a song song với mặt phẳng (P). Cho biết hai đường thẳng a, b có song song với nhau hay không.
Lời giải:
Ta có: a // (P);
a ⊂ (Q);
(P) ∩ (Q) = b.
Do đó theo định lí 2, a // b.
Vậy hai đường thẳng a, b song song với nhau.
Bài 3 trang 104 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD, điểm I nằm trên cạnh BC sao cho BI = 2IC. Chứng minh rằng IG song song với mặt phẳng (ACD).
Lời giải:
Gọi M là trung điểm của AD.
• Xét ABD có G là trọng tâm tam giác nên .
Theo bài, BI = 2IC nên
• Trong mặt phẳng (BCM):
Xét BCM có: , suy ra IG // CM (định lí Thalès đảo)
• Ta có: IG // CM; CM ⊂ (ACD)
Do đó IG // (ACD).
Bài 4 trang 104 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh rằng đường thẳng MN song song với giao tuyến d của hai mặt phẳng (SBC) và (SAD).
Lời giải:
• Ta có: S ∈ (SAD) và S ∈ (SBC) nên S là giao điểm của (SAD) và (SBC).
Lại có: AD // BC (do ABCD là hình bình hành);
AD ⊂ (SAD);
BC ⊂ (SBC).
Do đó giao tuyến d của hai mặt phẳng (SAD) và (SBC) là đường thẳng đi qua S và song song với AD, BC.
• Vì M, N lần lượt là trung điểm của AB và CD nên MN là đường trung bình
Do đó MN // BC // AD.
Ta có: MN // BC mà BC ⊂ (SBC) nên MN // (SBC);
MN // AD mà AD ⊂ (SAD) nên MN // (SAD).
Có: MN // (SBC);
MN // (SAD);
(SAD) ∩ (SBC) = d
Suy ra MN // d.
Bài 5 trang 104 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF).
Lời giải:
Gọi I là trung điểm của AB.
Xét DABF có M là trọng tâm của tam giác nên ;
Xét DABC có N là trọng tâm của tam giác nên ;
Trong mặt phẳng ACF, xét ACF có
Suy ra MN // FC (theo định lí Thalès)
Mà FC ⊂ (ACF).
Do đó MN // (ACF).
Bài 6 trang 104 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD = 3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.
a) Tìm giao tuyến của hai mặt phẳng (SAB) và (SCD).
b) Chứng minh rằng MN song song với mặt phẳng (SCD) và NG song song với mặt phẳng (SAC).
Lời giải:
a) Ta có: S ∈ (SAB) và S ∈ (SCD) nên S là giao điểm của (SAB) và (SCD).
Lại có: AB // CD (do ABCD là hình bình hành);
AB ⊂ (SAB);
CD ⊂ (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB, CD.
b) • Gọi O là tâm của hình bình hành, khi đó BO = OD = BD.
Xét DABC có N là trọng tâm của tam giác nên do đó .
Theo bài, AD = 3AM nên
Trong mặt phẳng (ABCD), xét ABD có
Do đó MN // AB (theo định lí Thalès đảo)
Trong mặt phẳng (ABCD) có: AB // CD và MN // AB nên MN // CD.
Lại có CD ⊂ (SCD)
Do đó MN // (SCD).
• Gọi I là trung điểm của SA.
Xét SAB có G là trọng tâm của tam giác nên
Trong (BIO), xét DBIO có:
Suy ra GN // IO (theo định lí Thalès đảo)
Mà IO ⊂ (SAC) nên GN // (SAC).
Xem thêm các lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:
Câu hỏi khởi động trang 101 Toán 11 Tập 1: Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh đường thẳng song song với mặt phẳng. Chẳng hạn, thanh barrier song song với mặt phẳng (Hình 44).....
Hoạt động 1 trang 101 Toán 11 Tập 1: a) Trong Hình 44, thanh barrier và mặt phẳng gợi nên hình ảnh đường thẳng d và mặt phẳng (P). Cho biết đường thẳng d và mặt phẳng (P) có điểm chung hay không....
Luyện tập 1 trang 102 Toán 11 Tập 1: Quan sát các xà ngang trên sân tập thể dục Hình 47. Hãy cho biết ở vị trí tương đối của các xà ngang đó đối với mặt sàn.....
Hoạt động 2 trang 102 Toán 11 Tập 1: Cho đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng a’ nằm trong (P) (Hình 48). Gọi (Q) là mặt phẳng xác định bởi hai đường thẳng song song a, a’....
Luyện tập 2 trang 102 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, AD. Các đường thẳng MN, NP, PM có song song với mặt phẳng (BCD) không? Vì sao?...
Hoạt động 3 trang 102, 103 Toán 11 Tập 1: Cho đường thẳng a song song với mặt phẳng (P). Cho mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b. (Hình 51).....
Luyện tập 3 trang 103 Toán 11 Tập 1: Ở Ví dụ 3, xác định giao tuyến của mặt phẳng (R) với các mặt phẳng (ABD), (BCD), (ACD).....
Hoạt động 4 trang 103 Toán 11 Tập 1: Cho hai mặt phẳng (P), (Q) cùng song song với đường thẳng a và (P) ∩ (Q) = b (Hình 54).....
Luyện tập 4 trang 104 Toán 11 Tập 1: Trong Hình 56, hai mặt tường của căn phòng gợi nên hình ảnh hai mặt phẳng (P) và (Q) cắt nhau theo giao tuyến b, mép cột gợi nên hình ảnh đường thẳng a. Cho biết đường thẳng a có song song với giao tuyến b hay không....
Bài 1 trang 104 Toán 11 Tập 1: Trong phòng họp của lớp, hãy nêu những hình ảnh về đường thẳng song song với mặt phẳng.....
Bài 2 trang 104 Toán 11 Tập 1: Trong Hình 57, khi cắt bánh sinh nhật, mặt cắt và mặt khay đựng bánh lần lượt gợi nên hình ảnh mặt phẳng (Q) và mặt phẳng (P); mép trên và mép dưới của lát cắt lần lượt gợi nên hình ảnh hai đường thẳng a và b trong đó a song song với mặt phẳng (P). Cho biết hai đường thẳng a, b có song song với nhau hay không.....
Bài 3 trang 104 Toán 11 Tập 1: Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABD, điểm I nằm trên cạnh BC sao cho BI = 2IC. Chứng minh rằng IG song song với mặt phẳng (ACD)....
Bài 4 trang 104 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh rằng đường thẳng MN song song với giao tuyến d của hai mặt phẳng (SBC) và (SAD)....
Bài 5 trang 104 Toán 11 Tập 1: Cho hai hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng. Gọi M, N lần lượt là trọng tâm của hai tam giác ABF và ABC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ACF)....
Bài 6 trang 104 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M trên cạnh AD sao cho AD = 3AM. Gọi G, N lần lượt là trọng tâm của tam giác SAB, ABC.....
Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:
Bài 2: Hai đường thẳng song song trong không gian
Bài 3: Đường thẳng và mặt phẳng song song
Bài 4: Hai mặt phẳng song song
Bài 5: Hình lăng trụ và hình hộp
Bài 6: Phép chiếu song song. Hình biểu diễn của một hình không gian