Một dãy số (un) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

1.4 K

Với giải Bài 2.50 trang 43 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài tập cuối chương 2 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài tập cuối chương 2

Bài 2.50 trang 43 SBT Toán 11 Tập 1: Một dãy số (un) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

u1 = a, un + 1 = qun + d.

Nếu q = 1 ta có cấp số cộng với công sai d, còn nếu d = 0 ta có cấp số nhân với công bội q.

a) Giả sử q ≠ 1. Dự đoán công thức số hạng tổng quát un.

b) Thiết lập công thức tính tổng Sn của n số hạng đầu của cấp số nhân cộng (un).

Lời giải:

a) Ta viết lần lượt các số hạng của dãy:

u1 = a;

u2 = qu1 + d;

u3 = qu2 + d = q(qu1 + d) + d = q2u1 + qd + d = q2u1+ d(q + 1);

u4 = qu+ d = q(q2u1 + qd + d) + d = q3u1 + q2d + qd + d

= q3u1 + d(q2 + q + 1) = q3u1 + d1q31q     (với q ≠ 1).

Làm tương tự ta được công thức số hạng tổng quát un:

un = qn – 1u1 + d(qn – 2 + qn – 3 + ... + 1) = qn – 1u1 + d1qn11q.

b) Ta viết tổng n số hạng đầu như sau

Sn = u1 + u2 + ... + un

= u­1 + (qu1 + d) + (qu2 + d) + ... + (qun – 1 + d)

= u1 + q(u1 + u2 + ... + un – 1) + (n – 1)d

= u1 + qSn – 1 + (n – 1)d

= qSn – 1 + a + (n – 1)d               (vì u1 = a).

Như vậy, ta được (Sn) cũng là một cấp số nhân cộng với S1 = u1 = a.

Áp dụng công thức số hạng tổng quát vừa tìm được ở câu a để tính Sn ta có

 Một dãy số un được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

Vậy  Một dãy số un được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

Đánh giá

0

0 đánh giá