Cho dãy số (un) xác định bằng hệ thức truy hồi u1 = 1, un + 1 = un + (n + 1)

2.5 K

Với giải Bài 2.5 trang 34 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 5: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:

Giải SBT Toán lớp 11 Bài 5: Dãy số

Bài 2.5 trang 34 SBT Toán 11 Tập 1: Cho dãy số (un) xác định bằng hệ thức truy hồi

u1 = 1, un + 1 = un + (n + 1).

a) Mỗi số hạng của dãy số này gọi là một số tam giác. Viết bảy số tam giác đầu.

b) Biết rằng 1 + 2 + ... + n = nn+12. Hãy chứng tỏ công thức của số hạng tổng quát là un+1=n+1n+22.

c) Chứng minh rằng un + 1 + un = (n + 1)2, tức là tổng của hai số tam giác liên tiếp là một số chính phương.

Lời giải:

a) Bảy số tam giác đầu là u1 = 1; u2 = u1 + (1 + 1) = 1 + 2 = 3;

u3 = u2 + (2 + 1) = 3 + 3 = 6; u4 = u3 + (3 + 1) = 6 + 4 = 10;

u5 = u4 + (4 + 1) = 10 + 5 = 15; u6 = u5 + (5 + 1) = 15 + 6 = 21;

u7 = u6 + (6 + 1) = 21 + 7 = 28.

b) Từ kết quả ở câu a, ta nhận thấy u1 = 1, u2 = 1 + 2, u3 = 1 + 2 + 3, u4 = 1 + 2 + 3 + 4, ...

Từ đó suy ra un + 1 = 1 + 2 + ... + n + (n + 1)

 =nn+12+n+1=nn+1+2n+12=n+1n+22.

Vậy un+1=n+1n+22.

c) Theo công thức ở câu b) ta có:

un+1+un=n+1n+22+nn+12=n+1n+2+n2=n+1.2n+12=n+12.

Vậy tổng của hai số tam giác liên tiếp là một số chính phương.

Đánh giá

0

0 đánh giá