Với giải Bài 2.2 trang 33 SBT Toán lớp 11 Kết nối tri thức chi tiết trong Bài 5: Dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 11. Mời các bạn đón xem:
Giải SBT Toán lớp 11 Bài 5: Dãy số
Bài 2.2 trang 33 SBT Toán 11 Tập 1: Xét tính tăng, giảm của mỗi dãy số sau:
a) un = n² + n + 1;
b) ;
c) .
Lời giải:
a) Ta có un + 1 – un = [(n + 1)2 + (n + 1) + 1] – (n2 + n + 1)
= n2 + 2n + 1 + n + 1 + 1 – n2 – n – 1
= 2n + 2 > 0, ∀ n ≥ 1.
Do đó, un + 1 > un ∀ n ≥ 1. Vậy (un) là dãy số tăng.
b) Ta có
.
Do đó, un + 1 < un ∀ n ≥ 1. Vậy (un) là dãy số giảm.
c) Ta có
.
Vì nên hiệu un + 1 – un dương hay âm phụ thuộc vào n, cụ thể là dương khi n chẵn và âm khi n lẻ.
Do đó, dãy số (un) không tăng cũng không giảm.
Xem thêm lời giải sách bài tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 2.1 trang 33 SBT Toán 11 Tập 1: Viết năm số hạng đầu tiên của mỗi dãy số (un) sau:...
Bài 2.2 trang 33 SBT Toán 11 Tập 1: Xét tính tăng, giảm của mỗi dãy số sau:...
Bài 2.3 trang 33 SBT Toán 11 Tập 1: Xét tính bị chặn của các dãy số sau:...
Bài 2.5 trang 34 SBT Toán 11 Tập 1: Cho dãy số (un) xác định bằng hệ thức truy hồi....
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác: