Cho tam giác ABC; M và N lần lượt là trung điểm của hai cạnh AB và AC. Lấy điểm P sao cho N là trung điểm của đoạn thẳng MP

2.7 K

Với giải Câu 1 trang 63 VTH Toán lớp 8 Kết nối tri thức chi tiết trong Luyện tập chung trang 63 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải VTH Toán 8 Luyện tập chung trang 63

Bài 1 trang 63 vở thực hành Toán 8 Tập 1: Cho tam giác ABC; M và N lần lượt là trung điểm của hai cạnh AB và AC. Lấy điểm P sao cho N là trung điểm của đoạn thẳng MP.

a) Hỏi tứ giác AMCP là hình gì? Vì sao?

b) Với điều kiện nào của tam giác ABC thì tứ giác AMCP là hình chữ nhật; hình thoi; hình vuông?

Lời giải:

Cho tam giác ABC; M và N lần lượt là trung điểm của hai cạnh AB và AC

(H.3.38). a) Tứ giác AMCP có NC = NA, NM = NP nên AMCP là hình bình hành vì hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.

b) Hình bình hành AMCP là hình chữ nhật khi góc AMC là góc vuông. Góc AMC là góc vuông khi trung tuyến CM cũng là đường cao của tam giác ABC, tức là tam giác ABC cân tại C.

+) Hình bình hành AMCP là hình thoi khi và chỉ khi có hai cạnh kề bằng nhau AM = CM, tức là MC = MA = MC; khi đó tam giác CBA vuông tại C.

+) Từ hai phần trên, suy ra tứ giác AMCP là hình vuông khi và chỉ khi tam giác ABC vuông cân tại C.

Đánh giá

0

0 đánh giá