Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm H sao cho BK = CH

692

Với giải Bài 6 trang 62 VTH Toán lớp 8 Kết nối tri thức chi tiết trong Bài 14: Hình thoi và hình vuông giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải VTH Toán 8 Bài 14: Hình thoi và hình vuông

Bài 6 trang 62 vở thực hành Toán 8 Tập 1: Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K, trên cạnh AC lấy điểm H sao cho BK = CH. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh KH, BH, BC, CK. Chứng minh rằng MNPQ là hình vuông.

Lời giải:

Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm K

(H.3.37). Vì MK = MH, NB = NH  MN là đường trung bình trong tam giác HKB.

 MN // KB và MN = 12KB (1)

Chứng minh tương tự, ta có:

PQ // KB và PQ = 12KB (2)

NP // CH và NP = 12CH (3)

Từ (1) và (2), ta có MN // PQ và MN = PQ  MNPQ là hình bình hành (4)

Ta có BK = CH (giả thiết). (5)

Từ (1), (3) và (5), ta có MN = NP  MNPQ là hình thoi (6)

Vì ∆ABC vuông tại A (giả thiết)  BK  CH, mà NP // CH, MN // KB (chứng minh trên).

 MN  NP (7).

Từ (6) và (7), ta có MNPQ là hình thoi có một góc vuông nên nó là hình chữ nhật.

Đánh giá

0

0 đánh giá