Góc kề bù với góc tại một đỉnh của tứ giác gọi là một góc ngoài tại đỉnh đó của tứ giác

1.5 K

Với giải Bài 3.6 trang 32 SBT Toán lớp 8 Kết nối tri thức chi tiết trong Bài 10: Tứ giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 8. Mời các bạn đón xem:

Giải SBT Toán lớp 8 Bài 10: Tứ giác

Bài 3.6 trang 32 sách bài tập Toán 8 Tập 1: a) Góc kề bù với góc tại một đỉnh của tứ giác gọi là một góc ngoài tại đỉnh đó của tứ giác. (Có hai góc ngoài tại một đỉnh của tứ giác, chúng đối đỉnh nên thường gọi tắt là góc ngoài tại đỉnh đó của tứ giác). Hãy tính tổng bốn góc ngoài tại bốn đỉnh của một tứ giác.

b) Định nghĩa góc ngoài tại một đỉnh của tam giác một cách tương tự. Hỏi tổng các góc ngoài của một tam giác bằng bao nhiêu?

Lời giải:

a)

Góc kề bù với góc tại một đỉnh của tứ giác gọi là một góc ngoài tại đỉnh đó của tứ giác

Do góc ngoài và góc tại đỉnh đó là 2 góc kề bù nên tổng bằng 180°.

Xét tứ giác ABCD (hình vẽ) có:

ˆA1+ˆB1+ˆC1+ˆD1=360°

Góc ngoài tại đỉnh A là A^2=180°A^1;

Góc ngoài tại đỉnh B là B^2=180°B^1;

Góc ngoài tại đỉnh C là C^2=180°C^1;

Góc ngoài tại đỉnh D là D^2=180°D^1.

Tổng 4 góc ngoài của tứ giác ABCD là:

A^2+B^2+C^2+D^2

=180°A^1+180°B^1+180°C^1+180°D^1

=4180°A^1+B^1+C^1+D^1

=2360°360°=360°.

b)

Góc kề bù với góc tại một đỉnh của tứ giác gọi là một góc ngoài tại đỉnh đó của tứ giác

Tương tự, với tam giác ABC, ta có tổng các góc ngoài là:

A^2+B^2+C^2

=180°A^1+180°B^1+180°C^1

=3180°A^1+B^1+C^1

=3180°180°=360°.

Đánh giá

0

0 đánh giá