Lý thuyết Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố (Chân trời sáng tạo 2024) hay, chi tiết | Toán lớp 6

3.8 K

Với tóm tắt lý thuyết Toán lớp 6 Bài 10: Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm, ôn luyện để học tốt môn Toán lớp 6.

Lý thuyết Toán lớp 6 Bài 10: Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố

Video giải Toán 6 Bài 10: Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố - Chân trời sáng tạo

A. Lý thuyết Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố

1. Số nguyên tố. Hợp số

− Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.

− Hợp số là số tự nhiên lớn hơn 1 có nhiều hơn hai ước.

Ví dụ:

+ Số 13 chỉ có hai ước là 1 và 13 nên 13 là số nguyên tố.

+ Số 15 có bốn ước là 1; 3; 5; 15 nên 15 là hợp số.

Lưu ý: Số 0 và số 1 không là số nguyên tố cũng không là hợp số.

2. Phân tích một số ra thừa số nguyên tố

a. Thế nào là phân tích một số ra thừa số nguyên tố?

Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.

Chú ý:

− Mọi số tự nhiên lớn hơn 1 đều phân tích được thành tích các thừa số nguyên tố.

− Mỗi số nguyên tố chỉ có một dạng phân tích ra thừa số nguyên tố là chính số đó.

− Có thể viết gọn dạng phân tích một số ra thừa số nguyên tố bằng cách dùng lũy thừa.

Ví dụ:

- Số 5 là số nguyên tố và dạng phân tích ra thừa số nguyên tố của nó là 5.

- Số 18 là hợp số và 18 được phân tích ra thừa số nguyên tố là:

18 = 2 . 3 . 3 (hoặc viết gọn là 18 = 2 . 32).

b. Cách phân tích một số ra thừa số nguyên tố

Cách 1: Phân tích một số ra thừa số nguyên tố theo cột dọc.

Chia số n cho một số nguyên tố (xét từ nhỏ đến lớn), rồi chia thương tìm được cho một số nguyên tố (cũng xét từ nhỏ đến lớn), cứ tiếp tục như vậy cho đến khi thương bằng 1.

Ví dụ: Số 76 được phân tích ra thừa số nguyên tố theo cột dọc như sau:

76

2

38

2

19

19

1

 

Vậy 76 = 22 . 19.

Chú ý: Viết các thừa số nguyên tố theo thứ tự từ bé đến lớn, tích các thừa số giống nhau dưới dạng lũy thừa.

Cách 2: Phân tích một số ra thừa số nguyên tố theo sơ đồ cây.

Bước 1: Phân tích số n thành tích của hai số bất kì khác 1 và chính nó.

Bước 2: Tiếp tục phân tích ước thứ nhất và ước thứ hai thành tích của hai số bất kì khác 1 và chính nó.

Bước 3: Cứ như vậy đến khi nào xuất hiện số nguyên tố thì dừng lại.

Bước 4: Số n bằng tích của các số cuối cùng của mỗi nhánh.

Ví dụ: Số 36 được phân tích ra thừa số nguyên tố theo sơ đồ cây như sau:

Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố  | Lý thuyết Toán lớp 6 Chân trời sáng tạo (ảnh 1)

Vậy 36 = 32 . 22.

B. Bài tập tự luyện

Bài 1: Mỗi số sau là số nguyên tố hay hợp số? Giải thích.

a) 19;

b) 125;

c) 187;

d) 59.

Hướng dẫn giải

a) Vì 19 chỉ có đúng hai ước là 1 và chính nó nên 19 là số nguyên tố.

b) Vì 125 có ước là 5 khác 1 và chính nó nên 125 có nhiều hơn 2 ước. Do đó 125 là hợp số.

c) Vì 187 có ước là 11 khác 1 và chính nó nên 187 có nhiều hơn 2 ước. Do đó 187 là hợp số.

d) Vì 59 chỉ có đúng hai ước là 1 và chính nó nên 59 là số nguyên tố.

Bài 2: Phân tích mỗi số sau ra thừa số nguyên tố rồi cho biết mỗi số chia hết cho các số nguyên tố nào?

a) 40;

b) 144;

c) 300.

Hướng dẫn giải

a) Ta có:

40

2

20

2

10

2

5

5

1

 

Do đó 40 = 23 . 5.

Số 40 có thể chia hết cho các số nguyên tố là 2 và 5.

b) Ta có:

144

2

72

2

36

2

18

2

9

3

3

3

1

 

Do đó 144 = 24 . 32.

Số 144 có thể chia hết cho các số nguyên tố là 2 và 3.

c) Ta có:

300

2

150

2

75

3

25

5

5

5

1

 

Do đó 300 = 22 . 3 . 52.

Số 300 có thể chia hết cho các số nguyên tố là 2; 3 và 5.

Bài 3: Các số tự nhiên từ 1991 đến 2005 thì số nào là số nguyên tố?

Hướng dẫn giải

Các số tự nhiên từ 1991 đến 2005 là số nguyên tố:

− Ta loại bỏ các số chẵn: 1992; 1994; 1996; …; 2004.

− Loại bỏ tiếp các số chia hết cho 3: 1995; 2001.

− Ta còn phải xét các số 1991; 1993; 1997; 1999; 2003. Ta tìm số nguyên tố p mà p2 < 2005 là 11, 13, 17, 19, 23, 29, 31, 37, 41, 43.

− Số 1991 chia hết cho 11 nên ta loại.

− Các số còn lại 1993, 1997, 1999, 2003 đều không chia hết cho các số nguyên tố trên.

Vậy từ 1991 đến 2005 chỉ có 4 số nguyên tố là 1993, 1997, 1999, 2003.

Xem thêm các bài tóm tắt lý thuyết Toán 6 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 9: Ước và bội

Lý thuyết Bài 10: Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố

Lý thuyết Bài 11: Ước chung, Ước chung lớn nhất

Lý thuyết Bài 12: Bội chung, Bội chung nhỏ nhất

Lý thuyết Bài 1: Số nguyên âm và tập hợp các số nguyên

Đánh giá

0

0 đánh giá