Với giải bài tập Toán lớp 6 Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố chi tiết bám sát nội dung sgk Toán 6 Tập 1 Chân trời sáng tạo giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập môn Toán 6. Mời các bạn đón xem:
Giải bài tập Toán 6 Bài 10: Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố
Video giải Toán 6 Bài 10: Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố - Chân trời sáng tạo
A. Các câu hỏi trong bài
Giải Toán 6 trang 31 Tập 1 Chân trời sáng tạo
Hoạt động khởi động trang 31 Toán lớp 6 Tập 1: Những số tự nhiên nào lớn hơn 1 và có ít ước nhất?
Lời giải:
Những số tự nhiên lớn hơn 1 và có ít ước nhất là 2; 3; 5; 7; 11; 13; …
Sau bài học này ta sẽ biết các số trên được gọi là số nguyên tố.
Hoạt động khám phá trang 31 Toán lớp 6 Tập 1: a) Tìm tất cả các ước của các số từ 1 đến 10.
b) Sắp xếp các số từ 1 đến 10 thành ba nhóm:
- Nhóm 1 bao gồm các số chỉ có một ước.
- Nhóm 2 bao gồm các số chỉ có hai ước khác nhau.
- Nhóm 3 bao gồm các số có nhiều hơn hai ước khác nhau.
Lời giải:
a) Ư(1) = {1};
Ư(2) = {1; 2};
Ư(3) = {1; 3};
Ư(4) = {1; 2; 4};
Ư(5) = {1; 5};
Ư(6) = {1; 2; 3; 6};
Ư(7) = {1; 7};
Ư(8) = {1; 2; 4; 8};
Ư(9) = {1; 3; 9};
Ư(10) = {1; 2; 5; 10}.
b)
- Nhóm 1 chỉ có số 1.
- Nhóm 2 bao gồm 2; 3; 5; 7.
- Nhóm 3 bao gồm 4; 6; 8; 9; 10.
b) Lan nói rằng: “Nếu một số tự nhiên không là số nguyên tố thì nó phải là hợp số”. Em có đồng ý với Lan không? Vì sao?
Lời giải:
a) Ta có: Ư(11) = {1; 11}; Ư(12) = {1; 2; 3; 4; 6; 12} và Ư(25) = {1; 5; 25}.
Số nguyên tố là 11 vì 11 lớn hơn 1 và chỉ có hai ước là 1 và chính nó.
Hợp số là: 12; 25 vì 12 có nhiều hơn 2 ước, còn 25 có 3 ước.
b) Không. Vì còn có số 0 và số 1 không phải là số nguyên tố và cũng không là hợp số.
Giải Toán 6 trang 33 Tập 1 Chân trời sáng tạo
Thực hành 2 trang 33 Toán lớp 6 Tập 1: Phân tích số 60 ra thừa số nguyên tố theo cột dọc.
Lời giải:
Phân tích số 60 ra thừa số nguyên tố theo cột dọc, ta được:
Vậy 60 = 2.2.3.5 = 22.31.51.
a)
18 = ?
b)
42 = ?
c)
280 = ?
Lời giải:
a)
18 = 2.32.
b)
42 = 2.3.7
c)
280 = 23.5.7
B. Bài tập
Bài 1 trang 33 Toán lớp 6 Tập 1: Mỗi số sau là số nguyên tố hay hợp số? Giải thích.
a) 213; b) 245;
c) 3 737; d) 67.
Lời giải:
a) Vì 213 có ước là 3 khác 1 và chính nó nên 213 có nhiều hơn 2 ước. Do đó 213 là hợp số.
b) Vì 245 có ước là 5 khác 1 và chính nó nên 245 có nhiều hơn 2 ước. Do đó 245 là hợp số.
c) Vì 3 737 có ước là 37 khác 1 và chính nó nên 3737 có nhiều hơn 2 ước. Do đó 3737 là hợp số.
d) Vì 67 chỉ có đúng hai ước là 1 và chính nó nên 67 là số nguyên tố.
Lời giải:
Ta nhận thấy 37 chỉ có hai ước là 1 và chính nó nên 37 là số nguyên tố mà cần ít nhất hai hàng nên không thể xếp các học sinh trong lớp thành các hàng có cùng số bạn.
Giải Toán 6 trang 34 Tập 1 Chân trời sáng tạo
Bài 3 trang 34 Toán lớp 6 Tập 1: Hãy cho ví dụ về:
a) Hai số tự nhiên liên tiếp đều là số nguyên tố.
b) Ba số lẻ liên tiếp đều là số nguyên tố.
Lời giải:
a) Hai số tự nhiên liên tiếp đều là số nguyên tố là 2 và 3.
b) Ba số lẻ liên tiếp đều là số nguyên tố là 3; 5; 7.
Bài 4 trang 34 Toán lớp 6 Tập 1: Mỗi khẳng định sau đúng hay sai?
a) Tích của hai số nguyên tố luôn là một số lẻ.
b) Tích của hai số nguyên tố có thể là một số chẵn.
c) Tích của hai số nguyên tố có thể là một số nguyên tố.
Lời giải:
a) Ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố luôn là một số lẻ” là SAI.
b) Như ý a ta có 2 và 13 là hai số nguyên tố.
Tích 2.13 = 26 là một số chẵn.
Do đó khẳng định “Tích của hai số nguyên tố có thể là một số chẵn” là ĐÚNG.
c) Tích của hai số nguyên tố a, b sẽ có các ước là 1, a, b và ab. Do đó tích của chúng có nhiều hơn hai ước nên không là một số nguyên tố.
Vì vậy khẳng định “Tích của hai số nguyên tố có thể là một số nguyên tố” là SAI.
a) 80; b) 120;
c) 225; d) 400.
Lời giải:
a)
80 = 2.2.2.2.5 = 24.5.
80 có thể chia hết cho các số nguyên tố là 2 và 5.
b)
120 = 2.2.2.3.5 = 23.3.5
120 có thể chia hết cho các số nguyên tố là 2, 3, 5.
c)
225 = 3.3.5.5 = 32.52.
225 có thể chia hết cho các số nguyên tố là 3 và 5.
d)
400 = 2.2.2.2.5.5 = 24.52.
400 có thể chia hết cho các số nguyên tố là 2 và 5.
a) 30; b) 225;
c) 210; d) 242.
Lời giải:
a)
30 = 2 . 3 . 5.
Khi đó ta tìm được các ước của 30 là 1; 2; 3; 5; 6; 10; 15; 30
Vậy ta viết Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}.
b)
225 = 3.3.5.5 = 32.52.
Khi đó ta tìm được các ước của 225 là: 1; 3; 5; 9; 15; 25; 45; 75; 225
Khi đó ta viết Ư(225) = {1; 3; 5; 9; 15; 25; 45; 75; 225}.
c)
210 = 2.3.5.7.
Khi đó ta tìm được các ước của 210 là: 1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210.
Vậy
Ư(210) = {1; 2; 3; 5; 6; 7; 10; 14; 15; 21; 30; 35; 42; 70; 105; 210}.
d)
242 = 2.11.11 = 2.112.
Ư(242) = {1; 2; 11; 22; 121; 242}.
Lời giải:
Phân tích các số trên ra thừa số nguyên tố ta được:
4 = 22, 7 = 7, 9 = 32, 21 = 3.7; 24 = 23.3; 34 = 2.17; 49 = 72.
Số nào có chung thừa số nguyên tố và thừa số đó có số mũ nhỏ hơn các thừa số nguyên tố trong phân tích của a thì sẽ là ước của a. Do đó ta thấy các ước của a là: 4; 7; 9; 21; 24.
Lời giải:
Vì 60 chia hết cho 15 hay 15 là ước của 60 nên Bình hoàn toàn có thể dùng những chiếc bánh chưng để xếp vừa khít vào khay.
Lý thuyết Số nguyên tố, Hợp số, Phân tích một số ra thừa số nguyên tố
1. Số nguyên tố. Hợp số
− Số nguyên tố là số tự nhiên lớn hơn 1, chỉ có hai ước là 1 và chính nó.
− Hợp số là số tự nhiên lớn hơn 1 có nhiều hơn hai ước.
Ví dụ:
+ Số 13 chỉ có hai ước là 1 và 13 nên 13 là số nguyên tố.
+ Số 15 có bốn ước là 1; 3; 5; 15 nên 15 là hợp số.
Lưu ý: Số 0 và số 1 không là số nguyên tố cũng không là hợp số.
2. Phân tích một số ra thừa số nguyên tố
a. Thế nào là phân tích một số ra thừa số nguyên tố?
Phân tích một số tự nhiên lớn hơn 1 ra thừa số nguyên tố là viết số đó dưới dạng một tích các thừa số nguyên tố.
Chú ý:
− Mọi số tự nhiên lớn hơn 1 đều phân tích được thành tích các thừa số nguyên tố.
− Mỗi số nguyên tố chỉ có một dạng phân tích ra thừa số nguyên tố là chính số đó.
− Có thể viết gọn dạng phân tích một số ra thừa số nguyên tố bằng cách dùng lũy thừa.
Ví dụ:
- Số 5 là số nguyên tố và dạng phân tích ra thừa số nguyên tố của nó là 5.
- Số 18 là hợp số và 18 được phân tích ra thừa số nguyên tố là:
18 = 2 . 3 . 3 (hoặc viết gọn là 18 = 2 . 32).
b. Cách phân tích một số ra thừa số nguyên tố
Cách 1: Phân tích một số ra thừa số nguyên tố theo cột dọc.
Chia số n cho một số nguyên tố (xét từ nhỏ đến lớn), rồi chia thương tìm được cho một số nguyên tố (cũng xét từ nhỏ đến lớn), cứ tiếp tục như vậy cho đến khi thương bằng 1.
Ví dụ: Số 76 được phân tích ra thừa số nguyên tố theo cột dọc như sau:
76 |
2 |
38 |
2 |
19 |
19 |
1 |
Vậy 76 = 22 . 19.
Chú ý: Viết các thừa số nguyên tố theo thứ tự từ bé đến lớn, tích các thừa số giống nhau dưới dạng lũy thừa.
Cách 2: Phân tích một số ra thừa số nguyên tố theo sơ đồ cây.
Bước 1: Phân tích số n thành tích của hai số bất kì khác 1 và chính nó.
Bước 2: Tiếp tục phân tích ước thứ nhất và ước thứ hai thành tích của hai số bất kì khác 1 và chính nó.
Bước 3: Cứ như vậy đến khi nào xuất hiện số nguyên tố thì dừng lại.
Bước 4: Số n bằng tích của các số cuối cùng của mỗi nhánh.
Ví dụ: Số 36 được phân tích ra thừa số nguyên tố theo sơ đồ cây như sau:
Vậy 36 = 32 . 22.
Xem thêm các bài giải SGK Toán lớp 6 Chân trời sáng tạo hay, chi tiết khác:
Bài 11: Hoạt động thực hành và trải nghiệm
Bài 12: Ước chung. Ước chung lớn nhất
Bài 13: Bội chung. Bội chung nhỏ nhất