Bài 3.32 trang 72 Toán 8 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 8

3.4 K

Với giải Bài 3.32 trang 72 Toán 8 Tập 1 Kết nối tri thức chi tiết trong Bài 14: Hình thoi và hình vuông giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 14: Hình thoi và hình vuông

Bài 3.32 trang 72 Toán 8 Tập 1: Chứng minh rằng các trung điểm của bốn cạnh trong một hình thoi là các đỉnh của một hình chữ nhật.

Lời giải:

Giả sử có hình thoi ABCD. Gọi E, F, G, H lần lượt là trung điểm của AB, BC, CD, DA.

Bài 3.32 trang 72 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Ta cần chứng minh EFGH là hình chữ nhật. Thật vậy:

Do ABCD là hình thoi nên AB = BC = CD = DA.

Do E, H lần lượt là trung điểm của AB, AD nên AH = DH = AE = BE.

Tam giác AHE có AH = AE nên là tam giác cân tại A, suy ra AHE^=AEH^ .

 HAE^+AHE^+AEH^=180°

Suy ra AHE^=180°HAE^2 .

Tương tự, ta có tam giác DHG cân tại D nên DHG^=180°HDG^2

Mặt khác, do ABCD là hình thoi nên AB // CD, suy ra HAE^+HDG^=180°

Khi đó AHE^+DHG^=180°HAE^2+180°HDG^2

=180°HAE^+180°HDG^2

=360°HAE^+HDG^2=360°180°2=90°

 AHE^+DHG^+EHG^=180°

Suy ra EHG^=180°AHE^+DHG^=180°90°=90°

Chứng minh tương tự như trên ta cũng có HEF^=EFG^=FGH^=90°.

Tứ giác EFGH có bốn góc vuông nên là hình chữ nhật.

Sơ đồ tư duy Hình thoi và hình vuông.

Từ khóa :
toán 8
Đánh giá

0

0 đánh giá