HĐ1 trang 68 Toán 8 Tập 1 Kết nối tri thức | Giải bài tập Toán lớp 8

648

Với giải HĐ1 trang 68 Toán 8 Tập 1 Kết nối tri thức chi tiết trong Bài 14: Hình thoi và hình vuông giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài 14: Hình thoi và hình vuông

HĐ1 trang 68 Toán 8 Tập 1: Cho hình thoi ABCD có hai đường chéo AC, BD cắt nhau tại O (H.3.48).

a) ∆ABD có cân tại A không?

b) AC có vuông góc với BD không và AC có là đường phân giác của góc A không? Vì sao?

HĐ1 trang 68 Toán 8 Tập 1 | Kết nối tri thức Giải Toán 8

Lời giải:

a) Vì tứ giác ABCD là hình thoi nên AB = AD.

Suy ra ∆ABD có cân tại A.

b) Vì tứ giác ABCD là hình thoi nên AB = BC = CD = DA.

Xét ∆ABC và ∆ADC có:

AB = AD (chứng minh trên);

BC = CD (chứng minh trên);

Cạnh AC chung.

Do đó ∆ABC = ∆ADC (c.c.c)

Suy ra A^1=A^2 (hai góc tương ứng)

Hay AC là đường phân giác của góc A.

Tam giác ABD cân tại A có AO là đường phân giác của góc A (vì AC là đường phân giác góc A) nên AO cũng là đường cao.

Khi đó AO ⊥ BD hay AC ⊥ BD.

Vậy AC vuông góc với BD và AC là đường phân giác của góc A.

Lý thuyết Hình thoi

1. Khái niệm

 (ảnh 1)

Hình thoi là tứ giác có bốn cạnh bằng nhau.

2. Tính chất

Trong hình thoi:

a. Hai đường chéo vuông góc với nhau;

b. Hai đường chéo là các đường phân giác của các góc trong hình thoi.

3. Dấu hiệu nhận biết hình thoi

a. Hình bình hành có hai cạnh kề bằng nhau là hình thoi.

b. Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

c. Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi

Từ khóa :
toán 8
Đánh giá

0

0 đánh giá