Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập)

Tải xuống 47 19.5 K 337

Tailieumoi.vn xin giới thiệu đến các quý thầy cô, các em học sinh đang trong quá trình ôn tập tài liệu bài tập Góc và khoảng cách trong không gian Toán lớp 12, tài liệu bao gồm 47 trang, tuyển chọn 49 bài tập Góc và khoảng cách trong không gian đầy đủ lý thuyết, phương pháp giải chi tiết và lời giải, giúp các em học sinh có thêm tài liệu tham khảo trong quá trình ôn tập, củng cố kiến thức và chuẩn bị cho kì thi tốt nghiệp THPT môn Toán sắp tới. Chúc các em học sinh ôn tập thật hiệu quả và đạt được kết quả như mong đợi.

Tài liệu Lý thuyết, bài tập về Góc và khoảng cách trong không gian có đáp án gồm các nội dung sau:

A. LÝ THUYẾT

I. CÁC DẠNG TOÁN LIÊN QUAN ĐẾN TÍNH GÓC

1. Góc giữa hai mặt phẳng.

Các bài toán về góc trong không gian và cách giải – Toán lớp 12 (ảnh 1)

Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng. Cụ thể:

Cho hai mặt phẳng  α và β. Giao tuyến của hai mặt phẳng là đường thẳng c. Ta có:

aαbβacbcα,β^=a,b^

Chú ý: Góc giữa hai mặt phẳng là góc không tù. (0°≤ φ ≤90° với φ là góc giữa hai mặt phẳng).

2. Góc giữa hai đường thẳng

Góc giữa hai đường thẳng a và b trong không gian là góc giữa hai đường thẳng a’ và b’ cùng đi qua một điểm và lần lượt song song với a và b. Góc giữa 2 đường thẳng là góc có số đo từ 0° đến 90°.

Các bài toán về góc trong không gian và cách giải – Toán lớp 12 (ảnh 1)

3. Góc giữa đường thẳng và mặt phẳng.

Các bài toán về góc trong không gian và cách giải – Toán lớp 12 (ảnh 1)

Góc giữa đường thẳng a và hình chiếu a’ của nó trên (P) gọi là góc giữa đường thẳng a và mặt phẳng (P).

Chú ý: Nếu φ là góc giữa đường thẳng d và mặt phẳng (α) thì ta luôn có 0°α90°.


II. KHOẢNG CÁCH

1. Khoảng cách từ một điểm đến một mặt phẳng, đến một đường thẳng.

Khoảng cách từ một điểm M đến một mặt phẳng (P) (hoặc đến đường thẳng ∆) là khoảng cách giữa hai điểm M và H, trong đó H là hình chiếu của điểm M trên mặt phẳng (P) (hoặc trên đường thẳng ∆).

+ Kí hiệu khoảng cách từ M đến (P) là d (M, (P))

Các bài toán về khoảng cách trong không gian và cách giải – Toán lớp 12 (ảnh 1)

+ Kí hiệu khoảng cách từ M đến ∆ là d (M, ∆)

Các bài toán về khoảng cách trong không gian và cách giải – Toán lớp 12 (ảnh 1)

2. Khoảng cách giữa đường thẳng và mặt phẳng song song, giữa hai mặt phẳng song song.

a) Khoảng cách giữa đường thẳng a và mặt phẳng α song song với a là khoảng cách từ một điểm bất kì của a tới mặt phẳng α cụ thể da,α=dA,α với A thuộc a.

Ta có: d(a, (α)) = d(A, (α)) = AH

với A thuộc a và H là hình chiếu của A lên mặt phẳng α

Các bài toán về khoảng cách trong không gian và cách giải – Toán lớp 12 (ảnh 1)

b) Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì của mặt phẳng này tới mặt phẳng kia, cụ thể dα,β=dM,β với M thuộc mặt phẳng α.

Các bài toán về khoảng cách trong không gian và cách giải – Toán lớp 12 (ảnh 1)

3. Khoảng cách giữa hai đường thẳng chéo nhau 

Đường thẳng MN cắt và vuông góc với cả a và b gọi là đường vuông góc chung của a và b.

Các bài toán về khoảng cách trong không gian và cách giải – Toán lớp 12 (ảnh 1)

Khoảng cách giữa hai đường thẳng chéo nhau bằng độ dài đoạn vuông góc chung của hai đường thẳng chéo nhau đó. Cụ thể: d (a, b) = MN.

B. BÀI TẬP

Câu 1: Trong không gian Oxyz, khoảng cách từ điểm A (1; 2; 2) đến mặt phẳng α: x + 2y – 2z – 4 = 0 bằng:

A. 3

B. 1

C133.

D13.

Câu 2: Tính khoảng cách giữa hai mặt phẳng song song (P): 2x – y – 2z – 4 = 0 và (Q): 2x – y – 2z = 2 = 0.

A. 2

B. 6

C103.

D43.

Câu 3: Tính khoảng cách giữa mặt phẳng (P): 2x – y – 2z – 4 = 0 và đường thẳng d: x=1+ty=2+4tz=t

A13.

B43.

C. 0.                                     

D. 2.

Câu 4: Khoảng cách từ điểm E (1; 1; 3) đến đường thẳng d:x=2+ty=4+3tz=25ttR bằng

A. 135.

B435.

C535.

D. 0.

Câu 5: Trong không gian Oxyz khoảng cách từ điểm M (3; -4; 1) tới mặt phẳng (Oyz) bằng

A. 1.

B. 14.

C. 4

D. 3.

Câu 6: Tính khoảng cách h từ điểm A (2; 1; 4) đến đường thẳng d:x11=y21=z12

A. h=11

B. h = 2.

C. h=5

D. h = 5.

Câu 7: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y + 2z + m = 0 và điểm A (1; 1; 1). Khi đó m nhận giá trị nào sau đây để khoảng cách từ điểm A đến mặt phẳng (P) bằng 1?

A. -2

B. -8

C. -2 hoặc - 8

D. 3.

Câu 8: Trong không gian Oxyz, khoảng cách từ điểm M (1; 3; 2) đến đường thẳng Δ:x=1+ty=1+tz=t là

A. 2

B. 3.     

C. 22

D. 2.

Câu 9: Khoảng cách giữa hai đường thẳng chéo nhau d1:x31=y+22=z4 và d2:x=13ty=2+tz=4 là

A. 24185

B. 28185

C. 12185

D. 36185

Câu 10: Tính khoảng cách giữa hai đường thẳng chéo nhau d1:x72=y+13=z5 và d2:x=2ty=2z=3+t

A. 53

B. 43

C. 33

D. 3

Câu 11: Gọi α là góc giữa hai đường thẳng AB, CD. Khẳng định nào sau đây là khẳng định đúng:

Acosα=AB.CDAB.CD.

Bcosα  =  AB.CDAB.CD.

Ccosα  =  AB.CDAB,CD.

Dcosα  =  AB.CDAB.CD.

Câu 12: Cho hai đường thẳng:

d1:  x  =  2  +  ty  =  1  +  tz  =  3và d2:  x  =  1    ty  =  2z  =  2  +  t. Góc giữa hai đường thẳng d1 và d2 là:

A. 30°

B. 120°

C. 150°

D. 60°

Câu 13: Cho đường thẳng Δ:  x1  =  y2  =  z1 và mặt phẳng (P): 5x + 11y + 2z – 4 = 0. Góc giữa đường thẳng Δ và mặt phẳng (P) là:

A60°

B30°

C30°

D-60°

Câu 14: Cho mặt phẳng (P): 2x – y + 2z – 1 = 0, (Q): x + 2y – 2z – 3 = 0. Côsin góc giữa mặt phẳng (P) và mặt phẳng (Q) bằng:

A. 49.

B-49.

C  433.

D-433.

Câu 15: Cho mặt phẳng (P): 3x + 4y + 5z + 2 = 0 và đường thẳng d là giao tuyến của hai mặt phẳng α:x – 2y + 1 = 0 và β:x – 2z – 3 = 0. Gọi φ là góc giữa đường thẳng d và mặt phẳng (P). Khi đó:

A. 60°

B. 45°

C. 30°

D. 90°

Câu 16: Cho mặt phẳng (P): 3x – 2y + 2z – 5 = 0. Điểm A (1; – 2; 2). Có bao nhiêu mặt phẳng đi qua A và tạo với mặt phẳng (P) một góc 45°.

A. Vô số

B. 1

C. 2

D. 4

Câu 17: Hai mặt phẳng nào dưới đây tạo với nhau một góc 60°?

A. (P) : 2x + 11y – 5z + 3 = 0 và (Q) : x + 2y – z – 2 = 0.

B. (P) : 2x + 11y – 5z + 3 = 0 và (Q) : -x + 2y + z – 5 = 0.

C. (P) : 2x - 11y + 5z - 21 = 0 và (Q) : 2x + y + z – 2 = 0.

D. (P) : 2x - 5y + 11z – 6 = 0 và (Q) : -x + 2y + z – 5 = 0.

Câu 18: Trong không gian với hệ tọa độ Oxyz, cho bốn điểm điểm A (-3; -4; 5), B (2; 7; 7), C (3; 5; 8), D (-2; 6; 1). Cặp đường thẳng nào tạo với nhau một góc 60°?

A. DB và AC

B. AC và CD.

C. AB và CB

D. CB và CA.

Câu 19 : Tính cosin của góc giữa hai mặt phẳng (P) : 5x – y + 2z – 9 = 0 và (Q) : -2x + 5y + z – 2017 = 0.

A. 110

B. 1330

C. 1330

D. 110

 Cho hai điểm A (1; -1; 1) và B (2; -2; 4). Có bao nhiêu mặt phẳng chứa A, B và tạo với mặt phẳng α: x – 2y + z – 7 = 0 một góc 60°.

A. 1.

B. 4.

C. 2.

D. Vô số.

Câu 21: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng(α):x+2y+2z+m=0 và điểm A(1;1;1). Khi đó m nhận giá trị nào sau đây để khoảng cách từ điểm A đến mặt phẳng (α) bằng 1?
A. – 2.
B. – 8.
C. – 2 hoặc – 8.
D. 3.

Câu 22: Trong không gian với hệ tọa độ Oxyz, mặt phẳng (α) cắt các trục Ox, Oy, Oz lần lượt tại 3 điểm A(2;0;0),B(0;3;0),C(0;0;4). Khi đó khoảng cách từ gốc tọa độ O đến mặt phẳng (ABC) là
A. 6112.
B. 4.
C. 126161.
D. 3.

Câu 23: Trong không gian với hệ trục toạ độ Oxyz, cho 3 điểm A(1;2;3);B(0;1;1);C(1;0;2).
Điểm M(P):x+y+z+2=0sao cho giá trị của biểu thức T=MA2+2MB2+3MC2 nhỏ nhất. Khi đó, điểm M cách (Q):2xy2z+3=0 một khoảng bằng
A. 12154.
B. 24.
C. 253.
D. 10154.

Xem thêm
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 1)
Trang 1
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 2)
Trang 2
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 3)
Trang 3
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 4)
Trang 4
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 5)
Trang 5
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 6)
Trang 6
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 7)
Trang 7
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 8)
Trang 8
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 9)
Trang 9
Góc và khoảng cách trong không gian 2024 (lý thuyết và bài tập) (trang 10)
Trang 10
Tài liệu có 47 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống