50 Bài tập Định nghĩa và ý nghĩa của đạo hàm (có đáp án)- Toán 11

Tải xuống 19 4.9 K 24

Tailieumoi.vn xin giới thiệu Bài tập Toán 11 Chương 5 Bài 1: Định nghĩa và ý nghĩa của đạo hàm. Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 11. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 5 Bài 1: Định nghĩa và ý nghĩa của đạo hàm. Mời các bạn đón xem:

Bài tập Toán 11 Chương 5 Bài 1: Định nghĩa và ý nghĩa của đạo hàm

A. Bài tập Định nghĩa và ý nghĩa của đạo hàm.

I. Bài tập trắc nghiệm

Bài 1: Xét ba mệnh đề sau: (1) Nếu hàm số f(x) có đạo hàm tại điểm x = x0 thì f(x) liên tục tại điểm đó. (2) Nếu hàm số f(x) liên tục tại điểm x = x0 thì f(x) có đạo hàm tại điểm đó. (3) Nếu f(x) gián đoạn tại x = x0 thì chắc chắn f(x) không có đạo hàm tại điểm đó. Trong ba câu trên:

A. Có hai câu đúng và một câu sai.

B. Có một câu đúng và hai câu sai.

 

C. Cả ba đều đúng.

D. Cả ba đều sai.

Lời giải:

(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x0 thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.

(2) Nếu hàm số f(x) liên tục tại điểm x = x0 thì f(x) có đạo hàm tại điểm đó.

Phản ví dụ

Lấy hàm f(x) = |x| ta có D = R nên hàm số f(x) liên tục trên R.

Nhưng ta có

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Nên hàm số không có đạo hàm tại x = 0.

Vậy mệnh đề (2) là mệnh đề sai.

(3) Nếu f(x) gián đoạn tại x = x0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.

Vì (1) là mệnh đề đúng nên ta có f(x) không liên tục tại x = x0 thì f(x) không có đạo hàm tại điểm đó.

Vậy (3) là mệnh đề đúng.

Chọn đáp án A

Bài 2: Cho hàm số f(x) = x2 - x, đạo hàm của hàm số ứng với số gia của đối số x tại x0 là

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 3: Xét hai câu sau: (1) Hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 liên tục tại x= 0. (2) Hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 có đạo hàm tại x=0 . Trong hai câu trên:

A. Chỉ có (2) đúng.

B. Chỉ có (1) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 4: Cho hàm số f(x) = x2 + |x|. Xét hai câu sau: (1). Hàm số trên có đạo hàm tại x= 0 (2). Hàm số trên liên tục tại x= 0 Trong hai câu trên:

 

A. Chỉ (1) đúng.

B. Chỉ (2) đúng.

C. Cả hai đều đúng.

D. Cả hai đều sai.

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 5: Tính đạo hàm của hàm số y = 2x2 + x + 1 tại điểm x = 2

A. 9

B. 4

C. 7

D. 6

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Kết luận theo định nghĩa, hàm số có đạo hàm tại x = 2 và f'(2) = 9.

Chọn đáp án A

Bài 6: Tính số gia của hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 tại x0 = 1

A.

B.

C.

D. Đáp án khác

Lời giải:

Cho x0 = 1 một số gia ∆x. Khi đó hàm số nhận một số gia tương ứng:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 7: Tính đạo hàm của hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 tại x = 3

A. 16

B.316

C. 29

D. 45

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 8: Tính đạo hàm của hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 tại x0 = 1.

A. 0

B. 4

C. 5

D. Đáp án khác

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án D

Bài 9: Cho hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11. Khi đó f'(0) là kết quả nào sau đây?

A. 14

B. 116

C. 132

D. Không tồn tại.

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án B

Bài 10: Cho hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11. Để hàm số này có đạo hàm tại x = 2 thì giá trị của b là

A. b = 3

B. b = -6

C. b = 1

D. b = 6

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Chọn đáp án D

II. Bài tập tự luận có giải

Bài 1: Cho hàm số y = f(x) có đạo hàm tại x0 là f'(x0) . Khẳng định nào sau đây sai?

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 2: Số gia của hàm số f(x) = x3 ứng với x0 = 2 và Δx = 1 bằng bao nhiêu?

Lời giải:

Gọi ∆x là số gia của đối số và ∆y là số gia tương ứng của hàm số.

Ta có :

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 3: Tỉ số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 của hàm số f(x) = 2x.( x - 1) theo x và Δx là?

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 4: Số gia của hàm số f(x) = x22 ứng với số gia Δx của đối số x tại x0 = -1 là

Lời giải:

Với số gia ∆x của đối số x tại x0 = -1 ,ta có:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 5: Tính đạo hàm của hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 tại điểm x0 = 1.

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 6: Cho hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11. Với giá trị nào sau đây của a, b thì hàm số có đạo hàm tại x = 1?

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Bài 7: Tính đạo hàm của hàm số Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11 tại x = 1.

Lời giải:

Bài tập trắc nghiệm Đại số và Giải tích 11 | Bài tập và Câu hỏi trắc nghiệm Đại số và Giải tích 11

Nhận xét: Hàm số y = f(x) có đạo hàm tại x = x0 thì phải liên tục tại điểm đó.

Bài 8: Tìm số gia của hàm số f(x) = x3, biết rằng:

Lời giải:

Số gia của hàm số được tính theo công thức:

Δy = f(x) – f(x0) = f(x0 + Δx) – f(x0)

a. Δy = f(1 + 1) – f(1) = f(2) – f(1) = 23 – 13 = 7

b. Δy = f(1 – 0,1) – f(1) = f(0,9) – f(1) = (0,9)3 – 13 = -0,271.

Bài 9

Định nghĩa và ý nghĩa của đạo hàm

Lời giải:

Định nghĩa và ý nghĩa của đạo hàm

Bài 10 Tính (bằng định nghĩa) đạo hàm của mỗi hàm số tại các điểm đã chỉ ra:

Định nghĩa và ý nghĩa của đạo hàm

Lời giải:

y = x2 + x tại x= 1

*Giả sử Δx là số gia của đối số tại x0 = 1. Ta có:

∆Δy = f(x0+Δx)-f(x0) = f(1-Δx) = f(1)

= (1+Δx)2 +(1+Δx)-(12 +1)

= Δx(3+Δx)

ΔxΔy = 3+x

* limΔxΔy = lim(3-Δx) = 3(vớiΔx →0)

Định nghĩa và ý nghĩa của đạo hàm

III. Bài tập vận dụng

Bài 1 Chứng minh rằng hàm số:

Định nghĩa và ý nghĩa của đạo hàm

Không có đạo hàm tại điểm x = 0 nhưng có đạo hàm tại điểm x = 2.

Bài 2 Viết phương trình tiếp tuyến đường cong y = x3

a. Tại điểm (-1; -1);

b. Tại điểm có hoành độ bằng 2;

c. Biết hệ số góc của tiếp tuyến bằng 3.

Bài 3 Viết phương trình tiếp tuyến của hypebol y = 1/x

Định nghĩa và ý nghĩa của đạo hàm

Bài 4 Một vật rơi tự do theo phương trình s=12 gt2, trong đó g≈9,8m/s2 là gia tốc trọng trường.

a. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t+Δt, trong các trường hợp Δt = 0,1s; Δt = 0,05s; Δt = 0,001s.

b. Tìm vận tốc tức thời của chuyển động tại thời điểm t = 5s.

Bài 5 Tìm số gia của hàm số f(x)=x3, biết rằng :

a) x0=1;x=1

b) x0=1;x=0,1

Bài 6 Tính y và ΔyΔx của các hàm số sau theo x và x :

a) y=2x5; b) y=x21;
c) y=2x3; d) y=1x

Bài 7 Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:

a) y=x2+x tại x0=1;

b) y=1x tại x0=2;

c) y=x+1x1 tại x0=0.

Bài 8 Chứng minh rằng hàm số 

f(x)={(x1)2 nếu x0x2 nếu x<0

không có đạo hàm tại điểm x=0 nhưng có đạo hàm tại điểm x=2.

Bài 9 Viết phương trình tiếp tuyến của đường cong y=x3:

a) Tại điểm có tọa độ (1;1);

b) Tại điểm có hoành độ bằng 2;

c) Biết hệ số góc của tiếp tuyến bằng 3

Bài 10 Viết phương trình tiếp tuyến của đường hypebol y=1x:

a) Tại điểm (12;2)

b) Tại điểm có hoành độ bằng 1;

c) Biết rằng hệ số góc của tiếp tuyến bằng -14.

B. Lý thuyết Định nghĩa và ý nghĩa của đạo hàm.

I. Đạo hàm tại một điểm

 

1. Định nghĩa đạo hàm tại một điểm

 Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 thuộc (a; b). Nếu tồn tại giới hạn (hữu hạn): limxx0fxfx0xx0 thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại điểm x0 và được kí hiệu là f'(x0). Vậy f'x0=limxx0fxfx0xx0.

* Chú ý:

Đại lượng ∆x = x- x0 được gọi là số gia của đối số tại x0.

Đại lượng ∆y= f(x) – f(x0)= f(x+ ∆x) –  f(x0) được gọi là số gia tương ứng của hàm số. Như vậy: y'x0=limΔxΔyΔx

2. Quy tắc tính đạo hàm bằng định nghĩa:

Để tính đạo hàm của hàm số y = f(x) tại điểm x0 bằng định nghĩa, ta có quy tắc sau đây:

+ Bước 1: Giả sử ∆x là số gia của đối số tại x0 tính:

∆y= f(x+ ∆x) – f( x0) .

+ Bước 2: Lập tỉ số ΔyΔx..

QUẢNG CÁO

+ Bước 3: Tìm limΔx0ΔyΔx.

Ví dụ 1. Cho hàm số y=2x3, có Δx là số gia của đối số tại x = 2. Khi đó ΔyΔx bằng bao nhiêu.

Lời giải

Tập xác định của hàm số đã cho là: D=32;+.

Giả sử ∆x là số gia của đối số tại x0 = 2. Ta có: Δy=f2+Δxf2=2.2+Δx3 2.23=2Δx+11

Khi đó:

ΔyΔx=2Δx+11ΔxlimΔx0ΔyΔx=limΔx02Δx+11Δx=limΔx02Δx+11.2Δx+1+1Δx.2Δx+1+1=limΔx02ΔxΔx.2Δx+1+1=limΔx022Δx+1+1=1

Vậy f’(2) = 1.

3. Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số

Định lý 1. Nếu hàm số y= f( x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.

Chú ý:

+ Nếu hàm số y= f(x) gián đoạn tại x0 thì hàm số không có đạo hàm tại điểm đó.

+ Một hàm số liên tục tại một điểm có thể không có đạo hàm tại điểm đó.

Ví dụ 2. Chẳng hạn hàm số y=f(x)=x2  khi  x0x        khi  x<0 liên tục tại x = 0 nhưng không có đạo hàm tại đó. Ta nhận xét rằng đồ thị của hàm số này là một đường liền, nhưng bị gãy tại điểm O(0;0) như hình vẽ sau:

Lý thuyết Định nghĩa và ý nghĩa của đạo hàm chi tiết – Toán lớp 11 (ảnh 1)

4. Ý nghĩa của đạo hàm

a) Ý nghĩa hình học của đạo hàm:

+) Định lí: Đạo hàm của hàm số y= f(x) tại điểm x = x0 là hệ số góc của tiếp tuyến M0T của đồ thị hàm số y= f( x) tại điểm M0(x0; f(x0)).

+) Định lí: Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là:

y – y0= f’(x0) ( x- x0) trong đó y0= f(x0).

Ví dụ 3. Viết phương trình tiếp tuyến của đường cong y = x3 – 3x2 + 2 tại điểm có hoành độ x = 3.

Lời giải

Bằng định nghĩa ta tính được: y’(3) = 9.

Do đó hệ số góc của tiếp tuyến là 9.

Ta có: y(3) = 2.

Vậy phương trình tiếp tuyến của đường cong tại điểm có hoành độ x = 3 là:

y = 9(x – 3) + 2 = 9x – 27 + 2 = 9x – 25.

b) Ý nghĩa vật lý của đạo hàm:

+) Vận tốc tức thời:

Xét chuyển động thẳng xác định bởi phương trình: s= s(t); với s= s(t) là một hàm số có đạo hàm. Vận tốc tức thời tại thời điểm t0 là đạo hàm của hàm số s= s(t) tại t0: v(t0) = s’(t0).

+) Cường độ tức thời:

Nếu điện lượng Q truyền trong dây dẫn là một hàm số của thời gian: Q= Q(t) ( là hàm số có đạo hàm) thì cường độ tức thời của dòng điện tại thời điểm t0 là đạo hàm của hàm số Q= Q(t) tại t0: I(t0) = Q’(t0) .

Ví dụ 4. Một xe máy chuyển động theo phương trình : s(t)= t2 + 6t+ 10 trong đó t đơn vị là giây; s là quãng đường đi được đơn vị m. Tính vận tốc tức thời của xe tại thời điểm t= 3.

Lời giải

Phương trình vận tốc của xe là v( t)=s' ( t)=2t+6 ( m/s)

⇒ Vận tốc tức thời của xe tại thời điểm t= 3 là:

V(3)= 2.3+ 6 = 12 (m/s)

Chọn A.

II. Đạo hàm trên một khoảng

Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm tại mọi điểm x trên khoảng đó.

Khi đó ta gọi hàm số f’:

 a;bxf'x

là đạo hàm của hàm số y = f(x) trên khoảng (a;b), kí hiệu là y’ hay f’(x).

Ví dụ 5. Hàm số y = x2 – 2x có đạo hàm y’ = 2x – 2 trên khoảng ;+.

Hàm số y=2x có đạo hàm y'=2x2 trên các khoảng ;0 và 0;+.

Tài liệu có 19 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống
Đánh giá

0

0 đánh giá

Tải xuống