Tailieumoi.vn xin giới thiệu Bài tập Toán 11 Chương 5 Bài 1: Định nghĩa và ý nghĩa của đạo hàm. Bài viết gồm 50 bài tập với đầy đủ các mức độ và có hướng dẫn giải chi tiết sẽ giúp học sinh ôn luyện kiến thức và rèn luyện kĩ năng làm bài tập Toán 11. Ngoài ra, bài viết còn có phần tóm tắt nội dung chính lý thuyết Chương 5 Bài 1: Định nghĩa và ý nghĩa của đạo hàm. Mời các bạn đón xem:
Bài tập Toán 11 Chương 5 Bài 1: Định nghĩa và ý nghĩa của đạo hàm
A. Bài tập Định nghĩa và ý nghĩa của đạo hàm.
I. Bài tập trắc nghiệm
Bài 1: Xét ba mệnh đề sau: (1) Nếu hàm số f(x) có đạo hàm tại điểm x = x0 thì f(x) liên tục tại điểm đó. (2) Nếu hàm số f(x) liên tục tại điểm x = x0 thì f(x) có đạo hàm tại điểm đó. (3) Nếu f(x) gián đoạn tại x = x0 thì chắc chắn f(x) không có đạo hàm tại điểm đó. Trong ba câu trên:
A. Có hai câu đúng và một câu sai.
B. Có một câu đúng và hai câu sai.
C. Cả ba đều đúng.
D. Cả ba đều sai.
(1) Nếu hàm số f(x) có đạo hàm tại điểm x = x0 thì f(x) liên tục tại điểm đó. Đây là mệnh đề đúng.
(2) Nếu hàm số f(x) liên tục tại điểm x = x0 thì f(x) có đạo hàm tại điểm đó.
Phản ví dụ
Lấy hàm f(x) = |x| ta có D = R nên hàm số f(x) liên tục trên R.
Nhưng ta có
Nên hàm số không có đạo hàm tại x = 0.
Vậy mệnh đề (2) là mệnh đề sai.
(3) Nếu f(x) gián đoạn tại x = x0 thì chắc chắn f(x) không có đạo hàm tại điểm đó.
Vì (1) là mệnh đề đúng nên ta có f(x) không liên tục tại x = x0 thì f(x) không có đạo hàm tại điểm đó.
Vậy (3) là mệnh đề đúng.
Chọn đáp án A
Bài 2: Cho hàm số f(x) = x2 - x, đạo hàm của hàm số ứng với số gia của đối số x tại x0 là
Chọn đáp án B
Bài 3: Xét hai câu sau: (1) Hàm số liên tục tại x= 0. (2) Hàm số có đạo hàm tại x=0 . Trong hai câu trên:
A. Chỉ có (2) đúng.
B. Chỉ có (1) đúng.
C. Cả hai đều đúng.
D. Cả hai đều sai.
Chọn đáp án B
Bài 4: Cho hàm số f(x) = x2 + |x|. Xét hai câu sau: (1). Hàm số trên có đạo hàm tại x= 0 (2). Hàm số trên liên tục tại x= 0 Trong hai câu trên:
A. Chỉ (1) đúng.
B. Chỉ (2) đúng.
C. Cả hai đều đúng.
D. Cả hai đều sai.
Chọn đáp án B
Bài 5: Tính đạo hàm của hàm số y = 2x2 + x + 1 tại điểm x = 2
A. 9
B. 4
C. 7
D. 6
Kết luận theo định nghĩa, hàm số có đạo hàm tại x = 2 và f'(2) = 9.
Chọn đáp án A
Bài 6: Tính số gia của hàm số tại x0 = 1
A.
B.
C.
D. Đáp án khác
Cho x0 = 1 một số gia ∆x. Khi đó hàm số nhận một số gia tương ứng:
Chọn đáp án B
Bài 7: Tính đạo hàm của hàm số tại x = 3
A.
B.
C.
D.
Chọn đáp án B
Bài 8: Tính đạo hàm của hàm số tại x0 = 1.
A. 0
B. 4
C. 5
D. Đáp án khác
Chọn đáp án D
Bài 9: Cho hàm số . Khi đó f'(0) là kết quả nào sau đây?
A.
B.
C.
D. Không tồn tại.
Chọn đáp án B
Bài 10: Cho hàm số . Để hàm số này có đạo hàm tại x = 2 thì giá trị của b là
A. b = 3
B. b = -6
C. b = 1
D. b = 6
Chọn đáp án D
II. Bài tập tự luận có giải
Bài 1: Cho hàm số y = f(x) có đạo hàm tại x0 là f'(x0) . Khẳng định nào sau đây sai?
Lời giải:
Bài 2: Số gia của hàm số f(x) = x3 ứng với x0 = 2 và Δx = 1 bằng bao nhiêu?
Lời giải:
Gọi ∆x là số gia của đối số và ∆y là số gia tương ứng của hàm số.
Ta có :
Bài 3: Tỉ số của hàm số f(x) = 2x.( x - 1) theo x và Δx là?
Lời giải:
Bài 4: Số gia của hàm số f(x) = ứng với số gia Δx của đối số x tại x0 = -1 là
Lời giải:
Với số gia ∆x của đối số x tại x0 = -1 ,ta có:
Bài 5: Tính đạo hàm của hàm số tại điểm x0 = 1.
Lời giải:
Bài 6: Cho hàm số . Với giá trị nào sau đây của a, b thì hàm số có đạo hàm tại x = 1?
Lời giải:
Bài 7: Tính đạo hàm của hàm số tại x = 1.
Lời giải:
Nhận xét: Hàm số y = f(x) có đạo hàm tại x = x0 thì phải liên tục tại điểm đó.
Bài 8: Tìm số gia của hàm số f(x) = x3, biết rằng:
Lời giải:
Số gia của hàm số được tính theo công thức:
Δy = f(x) – f(x0) = f(x0 + Δx) – f(x0)
a. Δy = f(1 + 1) – f(1) = f(2) – f(1) = 23 – 13 = 7
b. Δy = f(1 – 0,1) – f(1) = f(0,9) – f(1) = (0,9)3 – 13 = -0,271.
Bài 9
Lời giải:
Bài 10 Tính (bằng định nghĩa) đạo hàm của mỗi hàm số tại các điểm đã chỉ ra:
Lời giải:
y = x2 + x tại x0 = 1
*Giả sử Δx là số gia của đối số tại x0 = 1. Ta có:
∆Δy = f(x0+Δx)-f(x0) = f(1-Δx) = f(1)
= (1+Δx)2 +(1+Δx)-(12 +1)
= Δx(3+Δx)
* = 3+x
* lim = lim(3-Δx) = 3(vớiΔx →0)
III. Bài tập vận dụng
Bài 1 Chứng minh rằng hàm số:
Không có đạo hàm tại điểm x = 0 nhưng có đạo hàm tại điểm x = 2.
Bài 2 Viết phương trình tiếp tuyến đường cong y = x3
a. Tại điểm (-1; -1);
b. Tại điểm có hoành độ bằng 2;
c. Biết hệ số góc của tiếp tuyến bằng 3.
Bài 3 Viết phương trình tiếp tuyến của hypebol y = 1/x
Bài 4 Một vật rơi tự do theo phương trình s= gt2, trong đó g≈9,8m/s2 là gia tốc trọng trường.
a. Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t+Δt, trong các trường hợp Δt = 0,1s; Δt = 0,05s; Δt = 0,001s.
b. Tìm vận tốc tức thời của chuyển động tại thời điểm t = 5s.
Bài 5 Tìm số gia của hàm số , biết rằng :
a)
b)
Bài 6 Tính và của các hàm số sau theo và :
a) ; | b) ; |
c) ; | d) |
Bài 7 Tính (bằng định nghĩa) đạo hàm của mỗi hàm số sau tại các điểm đã chỉ ra:
a) tại ;
b) tại ;
c) tại .
Bài 8 Chứng minh rằng hàm số
không có đạo hàm tại điểm nhưng có đạo hàm tại điểm .
Bài 9 Viết phương trình tiếp tuyến của đường cong :
a) Tại điểm có tọa độ ;
b) Tại điểm có hoành độ bằng ;
c) Biết hệ số góc của tiếp tuyến bằng
Bài 10 Viết phương trình tiếp tuyến của đường hypebol :
a) Tại điểm
b) Tại điểm có hoành độ bằng ;
c) Biết rằng hệ số góc của tiếp tuyến bằng -.
B. Lý thuyết Định nghĩa và ý nghĩa của đạo hàm.
I. Đạo hàm tại một điểm
1. Định nghĩa đạo hàm tại một điểm
Cho hàm số y = f(x) xác định trên khoảng (a; b) và x0 thuộc (a; b). Nếu tồn tại giới hạn (hữu hạn): thì giới hạn đó được gọi là đạo hàm của hàm số y = f(x) tại điểm x0 và được kí hiệu là f'(x0). Vậy
* Chú ý:
Đại lượng ∆x = x- x0 được gọi là số gia của đối số tại x0.
Đại lượng ∆y= f(x) – f(x0)= f(x0 + ∆x) – f(x0) được gọi là số gia tương ứng của hàm số. Như vậy: .
2. Quy tắc tính đạo hàm bằng định nghĩa:
Để tính đạo hàm của hàm số y = f(x) tại điểm x0 bằng định nghĩa, ta có quy tắc sau đây:
+ Bước 1: Giả sử ∆x là số gia của đối số tại x0 tính:
∆y= f(x0 + ∆x) – f( x0) .
+ Bước 2: Lập tỉ số .
QUẢNG CÁO
+ Bước 3: Tìm
Ví dụ 1. Cho hàm số , có là số gia của đối số tại x = 2. Khi đó bằng bao nhiêu.
Lời giải
Tập xác định của hàm số đã cho là: .
Giả sử ∆x là số gia của đối số tại x0 = 2. Ta có:
Khi đó:
Vậy f’(2) = 1.
3. Quan hệ giữa sự tồn tại của đạo hàm và tính liên tục của hàm số
Định lý 1. Nếu hàm số y= f( x) có đạo hàm tại x0 thì nó liên tục tại điểm đó.
Chú ý:
+ Nếu hàm số y= f(x) gián đoạn tại x0 thì hàm số không có đạo hàm tại điểm đó.
+ Một hàm số liên tục tại một điểm có thể không có đạo hàm tại điểm đó.
Ví dụ 2. Chẳng hạn hàm số liên tục tại x = 0 nhưng không có đạo hàm tại đó. Ta nhận xét rằng đồ thị của hàm số này là một đường liền, nhưng bị gãy tại điểm O(0;0) như hình vẽ sau:
4. Ý nghĩa của đạo hàm
a) Ý nghĩa hình học của đạo hàm:
+) Định lí: Đạo hàm của hàm số y= f(x) tại điểm x = x0 là hệ số góc của tiếp tuyến M0T của đồ thị hàm số y= f( x) tại điểm M0(x0; f(x0)).
+) Định lí: Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại điểm M0(x0; f(x0)) là:
y – y0= f’(x0) ( x- x0) trong đó y0= f(x0).
Ví dụ 3. Viết phương trình tiếp tuyến của đường cong y = x3 – 3x2 + 2 tại điểm có hoành độ x = 3.
Lời giải
Bằng định nghĩa ta tính được: y’(3) = 9.
Do đó hệ số góc của tiếp tuyến là 9.
Ta có: y(3) = 2.
Vậy phương trình tiếp tuyến của đường cong tại điểm có hoành độ x = 3 là:
y = 9(x – 3) + 2 = 9x – 27 + 2 = 9x – 25.
b) Ý nghĩa vật lý của đạo hàm:
+) Vận tốc tức thời:
Xét chuyển động thẳng xác định bởi phương trình: s= s(t); với s= s(t) là một hàm số có đạo hàm. Vận tốc tức thời tại thời điểm t0 là đạo hàm của hàm số s= s(t) tại t0: v(t0) = s’(t0).
+) Cường độ tức thời:
Nếu điện lượng Q truyền trong dây dẫn là một hàm số của thời gian: Q= Q(t) ( là hàm số có đạo hàm) thì cường độ tức thời của dòng điện tại thời điểm t0 là đạo hàm của hàm số Q= Q(t) tại t0: I(t0) = Q’(t0) .
Ví dụ 4. Một xe máy chuyển động theo phương trình : s(t)= t2 + 6t+ 10 trong đó t đơn vị là giây; s là quãng đường đi được đơn vị m. Tính vận tốc tức thời của xe tại thời điểm t= 3.
Lời giải
Phương trình vận tốc của xe là v( t)=s' ( t)=2t+6 ( m/s)
⇒ Vận tốc tức thời của xe tại thời điểm t= 3 là:
V(3)= 2.3+ 6 = 12 (m/s)
Chọn A.
II. Đạo hàm trên một khoảng
Hàm số y = f(x) được gọi là có đạo hàm trên khoảng (a; b) nếu nó có đạo hàm tại mọi điểm x trên khoảng đó.
Khi đó ta gọi hàm số f’:
là đạo hàm của hàm số y = f(x) trên khoảng (a;b), kí hiệu là y’ hay f’(x).
Ví dụ 5. Hàm số y = x2 – 2x có đạo hàm y’ = 2x – 2 trên khoảng .
Hàm số có đạo hàm trên các khoảng và .