Câu hỏi:

29/10/2024 23.9 K

Có bao nhiêu cặp số nguyên (x,y) thỏa mãn

log3x2+y2+x+log2x2+y2log3x+log2x2+y2+24x?

A. 89

B. 48

Đáp án chính xác

C. 90

D. 49

Trả lời:

verified Giải bởi Vietjack

Chọn B

Điều kiện: x>0.

Ta có: log3x2+y2+x+log2x2+y2log3x+log2x2+y2+24x

log3x2+y2+xlog3xlog2x2+y2+24xlog2x2+y2

log3x2+y2+xxlog2x2+y2+24xx2+y2log31+x2+y2xlog21+24xx2+y2

log3x2+y2x+1log21+24xx2+y20. 

Đặt: t=x2+y2x(t>0), bất phương trình trở thành: log3(1+t)log21+24t0 (1).

Xét hàm số f(t)=log3(1+t)log21+24t có f'(t)=1(1+t)ln3+24t2+24tln2>0,t>0.

Suy ra hàm số đồng biến trên khoảng (0;+).

Ta có f(8)=log3(1+8)log21+248=0

Từ đó suy ra: (1)f(t)f(8)t8x2+y2x8(x4)2+y216.

Đếm các cặp giá trị nguyên của (x;y)

Ta có: (x4)2160x8, mà x>0 nên 0<x8.

Với x=1,x=7y={±2;±1;0} nên có 10 cặp.

Với x=2,x=6y={±3;±2;±1;0} nên có 14 cặp.

Với x=3,x=5y={±3;±2;±1;0} nên có 14 cặp.

Với x=4y={±4;±3;±2;±1;0} nên có 9 cặp.

Với x=8y=0 có 1 cặp.

Vậy có 48 cặp giá trị nguyên (x;y) thỏa mãn đề bài.

Các dạng bài tập giải bất phương trình logarit

Dạng 1. Bất phương trình logarit cơ bản

Ta có BPT logax ≥ m (logax ≤ m; logax < m; logax > m) 

Các dạng bài tập bất phương trình lôgarit và cách giải

Dạng 2. Phương pháp đưa về cùng cơ số

Xét bất phương trình logaf(x) > logag(x) (a > 0, a ≠ 1)  

• Nếu a > 1 thì logaf(x) > logag(x) ⇔ f(x) > g(x) (cùng chiều khi a > 1)

• Nếu 0 < a < 1 thì logaf(x) > logag(x) ⇔ f(x) < g(x) (ngược chiều khi 0 < a < 1 )

• Nếu a chứa ẩn thì logaf(x) > logag(x) ⇔ Các dạng bài tập bất phương trình lôgarit và cách giải (hoặc chia 2 trường hợp của cơ số)

Dạng 3. Phương pháp đặt ẩn phụ

Tương tự với phương pháp giải phương trình logarit bằng phương pháp đặt ẩn phụ nhưng lưu ý tới chiều biến thiên của hàm số. 

Dạng 4. Phương pháp mũ hóa

Tương tự với giải phương trình logarit bằng phương pháp mũ hóa.

Dạng 5. Phương pháp hàm số, đánh giá

Cho hàm số y = f(x) xác định và liên tục trên D:

Nếu hàm số f(t) luôn đồng biến trên D và ∀u,v ∈ D thì f(u) > f(v) ⇔ u > v

Nếu hàm số f(t) luôn nghịch biến trên D và ∀u,v ∈ D thì f(u) > f(v) ⇔ u < v

Bài tập liên quan:

Có bao nhiêu cặp số nguyên (x; y) thỏa mãn 0 ≤ x ≤ 2020 và log2(4x + 4) + x = y + 1 + 2y?

Cách giải:

log2(4x + 4) +x = y + 1 + 2y

⇔ log2[4(x + 1)] + x = y + 1 + 2y

⇔ log24 + log2(x + 1) + x = y + 1 + 2y

⇔ log2(x + 1) + 2 + x  = 2+ y + 1 (*)

Xét f(a) = 2a + a + 1

f'(a) = 2a. ln2 + 1 > 0

Suy ra f(a) là hàm số đồng biến trên R

Phương trình (*) tương đương với:

f(log2(x+1)) = f(y)

⇒ log2(x + 1) = y

⇔ x + 1 = 2y

⇔ x = 2y – 1

Do 0 ≤ x ≤ 2020 suy ra: 0 ≤ 2y – 1 ≤ 2020

⇔ 1 ≤ 2 ≤ 2021

⇔ 0 ≤ y ≤ 10,98

Vậy y ∈ {0;1;2;3;4;5;6;7;8;9;10} (có 11 số nguyên y)

Tương ứng có 11 số nguyên x

Vậy có 11 cặp số nguyên (x; y) thỏa mãn.

Tham khảo thêm một số tài liệu liên quan:

Bộ 15 Đề thi Toán 12 Giữa kì 2

30 Đề Thi Thử THPT QG Môn Toán Lớp 12

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên của tham số m để phương trình f(x)=m có ba nghiệm thực phân biệt?

Cho hàm số bậc ba y=f(x) có đồ thị là đường cong trong hình bên. Có bao nhiêu giá trị nguyên của tham số m để phương trình (ảnh 1)

Xem đáp án » 23/07/2024 50.2 K

Câu 2:

Trên tập hợp số phức, xét phương trình z22m+1z+m2=0 (m là số thực). Có bao nhiêu giá trị của m để phương trình đó có hai nghiệm phân biệt z1,z2 thỏa mãn z1+z2=2?

Xem đáp án » 24/10/2024 45.6 K

Câu 3:

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=x4+6x2+mx có ba điểm cực trị?

Xem đáp án » 23/07/2024 23.7 K

Câu 4:

Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãnf(x)+xf'(x)=4x3+4x+2,x. Diện tích hình phẳng giới hạn bởi các đường y=f(x) y=f'(x) bằng

Xem đáp án » 30/10/2024 16 K

Câu 5:

Cho hàm số f(x) liên tục trên R. Gọi Fx,Gx là hai nguyên hàm của f(x) trên R thỏa mãn F4+G4=4 F0+G0=1. Khi đó 02f2xdx bằng

Xem đáp án » 10/08/2024 13 K

Câu 6:

Có bao nhiêu giá trị nguyên của tham số a10;+ để hàm số y=x3+a+2x+9a2 đồng biến trên khoảng (0,1)?

Xem đáp án » 23/07/2024 12.2 K

Câu 7:

Xét các số phức z thỏa mãn z234i=2z. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z. Giá trị của M2+m2 bằng

Xem đáp án » 30/10/2024 10.4 K

Câu 8:

Cho hàm số y=ax+bcx+d có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Cho hàm số  y= ax+b/ cx+d có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là   (ảnh 1)

Xem đáp án » 28/10/2024 10 K

Câu 9:

Cho hàm số y=ax4+bx2+c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Cho hàm số  y= ax^4+bx^2+c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là (ảnh 1)

Xem đáp án » 23/07/2024 10 K

Câu 10:

Trong không gian Oxyz cho A0;0;10,B3;4;6. Xét các điểm M thay đổi sao cho tam giácOAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Xem đáp án » 22/07/2024 6.5 K

Câu 11:

Có bao nhiêu số nguyên x thỏa mãn log3x216343<log7x21627?

Xem đáp án » 19/07/2024 5.4 K

Câu 12:

Trên khoảng 0;+, đạo hàm của hàm số y=xπ 

Xem đáp án » 20/07/2024 5.1 K

Câu 13:

Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz)bằng

Xem đáp án » 19/07/2024 4.8 K

Câu 14:

Trong không gian Oxyz, cho điểm A0;1;2 và đường thẳng d:x22=y12=z13. Gọi (P) là mặt phẳng đi qua A và chứa d. Khoảng cách từ điểm M5;1;3 đến (P) bằng

Xem đáp án » 22/07/2024 3.9 K

Câu hỏi mới nhất

Xem thêm »
Xem thêm »