Với giải Bài 2.11 trang 45 Chuyên đề Toán 11 Kết nối tri thức chi tiết trong Bài 9: Đường đi Euler và đường đi Hamilton giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Chuyên đề Toán 11. Mời các bạn đón xem:
Giải Chuyên đề Toán 11 Bài 9: Đường đi Euler và đường đi Hamilton
Bài 2.11 trang 45 Chuyên đề Toán 11: Hãy chỉ ra một ví dụ chứng tỏ rằng điều kiện bậc của mỗi đỉnh của đồ thị G không nhỏ hơn trong Định lí Dirac, không thể thay bằng điều kiện “bậc của mỗi đỉnh không nhỏ hơn ”.
Lời giải:
Cho đơn đồ thị G có 5 đỉnh như hình vẽ sau:
Mỗi đỉnh của đồ thị này đều có bậc là 2 hoặc 3, đều không nhỏ hơn , thỏa mãn điều kiện của định lí Dirac nếu thay điều kiện “bậc của mỗi đỉnh của đồ thị G không nhỏ hơn ” bằng điều kiện “bậc của mỗi đỉnh không nhỏ hơn ”.
Định lí Dirac là một điều kiện đủ cho sự tồn tại chu trình Hamilton, nhưng đồ thị trên lại không có chu trình Hamilton. Do vậy, đây vì ví dụ cần đưa ra để chứng tỏ rằng điều kiện bậc của mỗi đỉnh của đồ thị G không nhỏ hơn trong Định lí Dirac, không thể thay bằng điều kiện “bậc của mỗi đỉnh không nhỏ hơn ”.
Xem thêm lời giải bài tập Chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
HĐ1 trang 41 Chuyên đề Toán 11: Nhận biết đường đi Euler....
HĐ2 trang 43 Chuyên đề Toán 11: Nhận biết đường đi Hamilton....
Xem thêm các bài giải chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Xem thêm các bài giải chuyên đề học tập Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Chuyên đề 1: Phép biến hình trong mặt phẳng
Chuyên đề 2: Làm quen với một vài khái niệm của lí thuyết đồ thị