Với giải Bài 9 trang 144 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 5 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:
Giải bài tập Toán lớp 11 Bài tập cuối chương 5
Bài 9 trang 144 Toán 11 Tập 1: Bảng sau thống kê số ca nhiễm mới SARS – coV-2 mỗi ngày trong tháng 12/2021 tại Việt Nam.
a) Xác định số trung bình và tứ phân vị của mẫu số liệu trên. Mẫu số liệu có bao nhiêu giá trị ngoại lệ?
b) Hoàn thiện bảng tần số ghép nhóm theo mẫu sau:
c) Hãy ước lượng số trung bình và tứ phân vị của mẫu số liệu ở bảng tần số ghép nhóm trên.
Lời giải:
a) Số ca nhiễm mới SARS – coV – 2 trung bình là:
(ca).
Dãy số liệu được sắp xếp theo chiều không giảm ta được:
14 254; 14 295; 14 299; 14 433; 14 598; 14 866; 14 927; 15 139; 15 215; 15 223; 15 264; 15 310; 15 420; 15 474; 15 667; 15 685; 15 720; 15 871; 15 965; 16 035; 16 046; 16 192; 16 363; 16 586; 16 633; 16 806; 16 830; 16 860; 17 004; 17 044; 20 454.
b) Ta có bảng tần số ghép nhóm như sau:
Số ca (nghìn) |
[14; 15,5) |
[15,5; 17) |
[17; 18,5) |
[18,5; 20) |
[20; 21,5) |
Giá trị đại diện |
14,75 |
16,25 |
17,75 |
19,25 |
20,75 |
Số ngày |
14 |
14 |
2 |
0 |
1 |
c) Ước lượng số ca nhiễm trung bình mỗi ngày:
.
Gọi x1; ...; x31 là số ca nhiễm mới SARS – coV – 2 mỗi ngày theo thứ tự không giảm.
Ta có: x1; ...; x14 ∈ [14; 15,5), x15; ...; x28 ∈ [15,5; 17), x29; x30 ∈ [18,5; 20), x31 ∈ [20; 21,5).
Khi đó:
Tứ phân vị thứ hai là x16 ∈ [15,5; 17), nên ta có:
.
Tứ phân vị thứ nhất là x8 ∈ [14; 15,5) nên ta có:
.
Tứ phân vị thứ ba x23 ∈ [15,5; 17) nên ta có:
.
Xem thêm các lời giải bài tập Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các bài giải SGK Toán lớp 11 Chân trời sáng tạo hay, chi tiết khác: