Thực hành 3 trang 105 Toán 11 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 11

1.1 K

Với giải Thực hành 3 trang 105 Toán 11 Tập 1 Chân trời sáng tạo chi tiết trong Bài 2: Hai đường thẳng song song giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Hai đường thẳng song song

Thực hành 3 trang 105 Toán 11 Tập 1: Cho tứ diện ABCD có I và J lần lượt là trung điểm của các cạnh BC và BD. Gọi (P) là mặt phẳng đi qua I, J và cắt hai cạnh AC và AD lần lượt tại M và N.

a) Chứng minh IJNM là một hình thang.

b) Tìm vị trí của điểm M để IJNM là hình bình hành.

Lời giải:

a) Ta có: Thực hành 3 trang 105 Toán 11 Tập 1 Chân trời sáng tạo | Giải Toán 11.

Xét tứ giác IJNM có: MN // IJ nên IJNM là hình thang.

b) Để IJNM là hình bình hành thì MN = IJ

Ta có: IJ = 12CD (IJ là đường trung bình của tam giác BCD) nên MN = 12CD và MN // CD nên MN là đường trung bình của tam giác ACD. Khi đó M là trung điểm của AC.

Lý thuyết Tính chất cơ bản của hai đường thẳng song song

  • Trong không gian, qua một điểm không nằm trên đường thẳng cho trước, có đúng một đường thẳng song song với đường thẳng đã cho.

 (ảnh 3) 

  • Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì 3 giao tuyến đó đồng quy hoặc đôi một song song.

 (ảnh 4)

* Hệ quả: Nếu hai mặt phẳng phân biệt chứa 2 đường thẳng song song với nhau thì giao tuyến (nếu có) của chúng song song với 2 đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

 (ảnh 5) 

  • Trong không gian, hai đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì song song với nhau.

 

Từ khóa :
Toán 11
Đánh giá

0

0 đánh giá