Bài 11 trang 89 Toán 8 Tập 1 Chân trời sáng tạo | Giải bài tập Toán lớp 8

658

Với giải Bài 11 trang 89 Toán 8 Tập 1 Chân trời sáng tạo chi tiết trong Bài tập cuối chương 3 trang 88 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 8. Mời các bạn đón xem:

Giải bài tập Toán lớp 8 Bài tập cuối chương 3 trang 88

Bài 11 trang 89 Toán 8 Tập 1: Cho hình bình hành ABCD có AB = 2AD. Gọi E và F lần lượt là trung điểm của AB và CD, I là giao điểm của AF và DE, K là giao điểm của BF và CE.

a) Chứng minh rằng tứ giác AECF là hình bình hành.

b) Tứ giác AEFD là hình gì? Vì sao?

c) Chứng minh rằng tứ giác EIFK là hình chữ nhật.

d) Tìm điều kiện của hình bình hành ABCD để tứ giác EIFK là hình vuông.

Lời giải:

Bài 11 trang 89 Toán 8 Tập 1 Chân trời sáng tạo | Giải Toán 8

a) • Do ABCD là hình bình hành nên AB = CD và AB // CD.

Vì E là trung điểm của AB nên EA=EB=12AB.

     F là trung điểm của CD nên FC=FD=12CD.

Mà AB = CD (chứng minh trên).

Do đó EA = EB = FC = FD.

• Xét tứ giác AECF có EA = FC và EA // FC (do AB // CD)

Suy ra AECF là hình bình hành.

b) Xét tứ giác AEFD có AE = DF (chứng minh ở câu a) và AE // DF (do AB // CD)

suy ra AEFD là hình bình hành.

Mặt khác AB = 2AD nên AD=AE=12AB

Khi đó hình bình hành AEFD là hình thoi.

c) Do AEFD là hình thoi (câu c) nên ta có:

• AF ⊥ DE suy ra EIF^=90°;

• ED là đường phân giác của góc AEF nên DEF^=12AEF^.

Chứng minh tương tự câu c ta cũng có tứ giác BEFC là hình thoi

Suy ra:

• BF ⊥ CE suy ra EKF^=90°;

• EC là đường phân giác của góc BEF nên CEF^=12BEF^.

Ta có: IEK^=DEF^+CEF^=12AEF^+12BEF^=12AEF^+BEF^

Mà AEF^+BEF^=180° (hai góc kể bù)

Suy ra IEK^=DEF^+CEF^=12.180°=90°.

• Xét tứ giác EIFK có EIF^=90°;EKF^=90°;IEK^=90° nên là hình chữ nhật.

d) Theo câu c, tứ giác EIFK là hình chữ nhật

Do đó để tứ giác EIFK là hình vuông thì IE = IF   (1)

Xét hình thoi AEFD có hai đường chéo AF, DE cắt nhau tại trung điểm của mỗi đường nên I là trung điểm của AF và DE.

Suy ra IA = IF và ID = IE (2)

Từ (1) và (2) suy ra IA = ID

Tam giác IAD có IA = ID nên là tam giác cân tại I

Lại có AID^=90° (do AF ⊥ DE) nên DIAD vuông cân tại I

Suy ra IAD^=45°.

Mặt khác AEFD là hình thoi (câu c) nên ta có AF là đường phân giác của góc EAD

Suy ra EAD^=2IAD^=2.45°=90°, hay BAD^=90°.

Vậy để tứ giác EIFK là hình vuông thì hình bình hành ABCD cần thêm điều kiện BAD^=90° hay ABCD là hình chữ nhật.

Đánh giá

0

0 đánh giá