Hoạt động 5 trang 63 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

510

Với giải Hoạt động 5 trang 63 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 1: Giới hạn của dãy số giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 1: Giới hạn của dãy số

Hoạt động 5 trang 63 Toán 11 Tập 1: Quan sát dãy số (un) với u­n = n2 và cho biết giá trị của nn có thể lớn hơn một số dương bất kì được hay không kể từ một số hạng nào đó trở đi.

Lời giải:

Ta có bảng giá trị sau:

n

1

2

3

...

100

...

1001

un

1

4

9

...

10 000

...

1 002 001

Từ đó ta có các nhận xét sau:

+) Kể từ số hạng thứ 2 trở đi thì un > 1 .

+) Kể từ số hạng thứ 101 trở đi thì un > 10 000.

...

Vậy ta thấy un có thể lớn hơn một số dương bất kì kể từ một số hạng nào đó trở đi.

Lý thuyết Giới hạn vô cực

- Dãy số (un) được gọi là có giới hạn +khi n+ nếu un có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu limx+un=+ hay un+ khi n+.

- Dãy số (un) được gọi là có giới hạn khi n+ nếu limx+(un)=+, kí hiệu limx+un= hay un khi n+.

*Nhận xét:

  • limnk=+,kZ+limqn=+;qR,q>1.
  • Nếu limx+un=avà limx+vn=+(hoặclimx+vn=) thì limn+(unvn)=0.
  • Nếu limx+un=a>0và limx+vn=0,n thì limn+(unvn)=+.
  • limn+(unvn)=+.
  • Nếu limx+un=+limn+(un)=
Đánh giá

0

0 đánh giá