Hoạt động 1 trang 16 Toán 11 Tập 1 Cánh diều | Giải bài tập Toán lớp 11

361

Với giải Hoạt động 1 trang 16 Toán 11 Tập 1 Cánh diều chi tiết trong Bài 2: Các phép biến đổi lượng giác giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 11. Mời các bạn đón xem:

Giải bài tập Toán lớp 11 Bài 2: Các phép biến đổi lượng giác

Hoạt động 1 trang 16 Toán 11 Tập 1: a) Cho a=π6,b=π3. Hãy tính sina, cosa, sinb, cosb và sin(a + b). Từ đó rút ra đẳng thức sin(a + b) = sina cosb + cosa sinb (*).

b) Tính sin(a – b) bằng cách biến đổi sin(a – b) = sin[a + (‒b)] và sử dụng công thức (*).

Lời giải:

a) Với a=π6 ta có sina = sinπ6=12; cosa = cosπ6=32.

Với b=π3 ta có sinb = sinπ3=32; cosb = cosπ3=12.

Ta có sin(a+b) = sinπ6+π3 = sinπ2= 1;

sinacosb + cosasinb = 12.12+32.32=14+34= 1

Do đó sin(a + b) = sina cosb + cosa sinb (vì cùng bằng 1).

b) Ta có sin(a – b) = sin[a + (‒b)]

= sina cos(‒b) + cosa sin(‒b)

= sina cosb + cosa (‒sinb)

= sina cosb ‒ cosa sinb

= 12.1232.32

=1434=12.

Lý thuyết Công thức cộng

sin(a+b)=sinacosb+cosasinbsin(ab)=sinacosbcosasinbcos(a+b)=cosacosbsinasinbcos(ab)=cosacosb+sinasinbtan(a+b)=tana+tanb1tanatanbtan(ab)=tanatanb1+tanatanb

Đánh giá

0

0 đánh giá