Tìm số tự nhiên n sao cho: 3n + 13 chia hết cho n + 1

525

Với giải Bài 108 trang 32 SBT Toán lớp 6 Cánh diều chi tiết trong Bài 11: Phân tích một số ra thừa số nguyên tố giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SBT Toán 6. Mời các bạn đón xem:

Giải SBT Toán lớp 6 Bài 11: Phân tích một số ra thừa số nguyên tố

Bài 108 trang 32 sách bài tập Toán lớp 6 Tập 1: Tìm số tự nhiên n sao cho:

a) 3n + 13 chia hết cho n + 1;

b) 5n + 19 chia hết cho 2n + 1.

Lời giải:

a) Ta có: 3n + 13 = 3n + 3 + 10 = 3.(n + 1) + 10.

Vì 3.(n + 1) chia hết cho n + 1 nên để 3n + 13 chia hết cho n + 1 thì 10 phải chia hết cho n + 1 hay n + 1 là ước của 10.

Ta có: 10 = 2.5 nên các ước của 10 là: Ư(10) = {1; 2; 5; 10}.

Ta có bảng sau:

     n + 1

     1

     2   

       5

      10

       n

      0

     1

       4

      9

Vậy n ∈ {0; 1; 4; 9}.

b) 5n + 19 chia hết cho 2n + 1.

Vì 5n + 19 chia hết cho 2n + 1 nên 2(5n + 19) chia hết cho 2n + 1

Xét 2(5n + 19) = 10n + 38 = 10n + 5 + 33 = 5(2n + 1) + 33.

Vì 5.(2n + 1) chia hết cho 2n + 1 nên để 2(5n + 19) chia hết cho 2n + 1 thì 33 phải chia hết cho 2n + 1 hay 2n + 1 thuộc ước của 33.

Ta có bảng sau:

      2n + 1

     1

      3 

      11

       33

        n

     0

     1

      5

       16

Vậy n ∈ {0; 1; 5; 16}.

Từ khóa :
toán 6
Đánh giá

0

0 đánh giá