Nội dung bài viết
Với giải Bài 8.23 trang 76 SGK Toán 10 Kết nối tri thức chi tiết trong Bài tập cuối chương 8 giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập trong SGK Toán 10. Mời các bạn đón xem:
Giải bài tập Toán lớp 10 Bài tập cuối chương 8
Bài 8.23 trang 76 Toán 10 Tập 2: Từ các chữ số: 1; 2; 3; 4; 5; 6.
a) Có thể lập được bao nhiêu số có ba chữ số khác nhau?
b) Có thể lập được bao nhiêu số có ba chữ số khác nhau và chia hết cho 3 ?
Lời giải:
a) Mỗi cách lập một số có 3 chữ số khác nhau là việc lấy 3 phần tử từ tập chữ số: 1; 2; 3; 4; 5; 6, rồi sắp xếp chúng, nên mỗi cách lập số là một chỉnh hợp chập 3 của 6.
Vậy số các số có ba chữ số khác nhau lập từ sáu chữ số đã cho là A36 = 120 số.
b) Một số chia hết cho 3 khi và chỉ khi tổng các chữ số của nó phải chia hết cho 3.
Các bộ ba chữ số có tổng chia hết cho 3 trong các chữ số đã cho là:
(1; 2; 3), (1; 2; 6), (1; 3; 5), (1; 5; 6), (2; 3; 4), (2; 4; 6), (3; 4; 5), (4; 5; 6).
Ứng với mỗi bộ trên, ta lập được 3! = 6 số.
Có 8 bộ ba chữ số, do đó số các số có 3 chữ số khác nhau được lập từ các chữ số: 1; 2; 3; 4; 5; 6, chia hết cho 3 là: 8 . 6 = 48 (số).
Xem thêm lời giải sách giáo khoa Toán 10 Kết nối tri thức hay, chi tiết khác:
Bài 8.21 trang 76 Toán 10 Tập 2: Hệ số của x4 trong khai triển nhị thức (3x – 4)5 là...
Bài 8.23 trang 76 Toán 10 Tập 2: Từ các chữ số: 1; 2; 3; 4; 5; 6...