Giải Toán 6 trang 47 Tập 2 Cánh diều

3.1 K

Với Giải toán lớp 6 trang 47 Tập 2 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 6. Mời các bạn đón xem:

Giải Toán 6 trang 47 Tập 2 Cánh diều

Hoạt động 3 trang 47 Toán lớp 6 Tập 2: Nêu cách so sánh hai số nguyên âm.

Lời giải:

Cách so sánh hai số nguyên âm a và b:

- Tìm số đối của hai số nguyên a và b.

- Ta sẽ so sánh số đối của hai số nguyên âm a và b với nhau (số nguyên âm nào có số đối lớn hơn thì sẽ nhỏ hơn).

Luyện tập 3 trang 47 Toán lớp 6 Tập 2: Viết các số sau theo thứ tự giảm dần:

-120,341; 36,095; 36,1; -120,34.

Lời giải:

Ta sẽ chia các số thập phân trên thành hai nhóm:

- Nhóm 1 gồm các số thập phân âm: -120,341; -120,34.

- Nhóm 2 gồm các số thập phân dương: 36,095; 36,1.

Vì các số thập phân âm luôn nhỏ hơn các số thập phân dương nên ta chỉ cần so sánh các số trong từng nhóm với nhau.

Ở nhóm 1: Ta có số đối của số thập phân -120,341 là 120,341 và số đối của số thập phân – 120,34 là 120,34. Ta có: 120 = 120, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần nghìn. Do 1 > 0 nên 120,341 > 120,34 hay -120,341 < -120,34.

Ở nhóm 2: Ta có 36 = 36, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 1 nên 36,095 < 36,1.

Suy ra -120,341 < -120,34 < 36,095 < 36,1.

Vậy 36,1; 36,095; -120,34; -120,341.

Bài 1 trang 47 Toán lớp 6 Tập 2: Viết các phân số và hỗn số sau dưới dạng số thập phân: Viết các phân số và hỗn số sau dưới dạng số thập phân:

Lời giải:

Các phân số và hỗn số viết dưới dạng số thập phân là:

Viết các phân số và hỗn số sau dưới dạng số thập phân:

Bài 2 trang 47 Toán lớp 6 Tập 2: Viết các số thập phân sau dưới dạng phân số tối giản: - 0,225; - 0,033.

Lời giải:

Các số thập phân được viết dưới dạng phân số tối giản là:

Viết các số thập phân sau dưới dạng phân số tối giản: - 0,225; - 0,033.

Bài 3 trang 47 Toán lớp 6 Tập 2: Viết các số sau theo thứ tự tăng dần:

a) 7,012; 7,102; 7,01; 

b) 73,059; - 49,037; - 49,307.

Lời giải:

a) Ta sẽ so sánh từng cặp số với nhau:

+) 7,012 và 7,102.

Ta có 7 = 7, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 1 nên 7,012 < 7,102 (1).

+) 7,012 và 7,01

Ta có 7 = 7, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần nghìn. Do 0 < 2 nên 7,012 > 7,01 (2).

Từ (1) và (2) suy ra: 7,01 < 7,012 < 7,102.

Vậy các số theo thứ tự tăng dần là: 7,01; 7,012; 7,102.

b) Vì số thập phân âm luôn bé hơn số thập phân dương nên ta chỉ cần so sánh -49,037 và -49,307.

Ta có số đối của số thập phân -49,037 là 49,037 và số đối của số thập phân -49,307 là 49,307.

Ta có: 49 = 49, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 3 nên 49,037 < 49,307 hay -49,037 > -49,307.

Suy ra: -49,307 < -49,037 < 73,059.

Vậy các số theo thứ tự tăng dần là: -49,307; -49,037; 73,059.

Bài 4 trang 47 Toán lớp 6 Tập 2: Viết các số sau theo thứ tự giảm dần:

a) 9,099; 9,009; 9,090; 9,990; 

b) - 6,27; - 6,207; - 6,027; - 6,277.

Lời giải:

a) Ta có: 9 = 9, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 9 nên 9,990 là số lớn nhất.

Các số còn lại, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần trăm. Do 0 < 9 nên 9,009 là số nhỏ nhất.

Hai số còn lại là 9,099; 9,090, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần nghìn. Do 0 < 9 nên 9,090 < 9,099.

Suy ra 9,009 < 9,090 < 9,099 < 9,990.

Vậy các số theo thứ tự giảm dần là: 9,990; 9,099; 9,090; 9,009.

b) Vì các số - 6,27; - 6,207; - 6,027; - 6,277 đều là số thập phân âm nên ta sẽ chuyển qua so sánh các số đối lần lượt là: 6,27; 6,207; 6,027; 6,277.

Ta có 6 = 6, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 2 nên số 6,027 là số nhỏ nhất.

Đối với các số còn lại 6,27; 6,207; 6,277, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần trăm. Do 0 < 7 nên 6,207 là số nhỏ nhất trong dãy này.

Còn lại hai số 6,27; 6,277, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần nghìn. Do 0 < 7 nên 6,27 < 6,277.

Suy ra 6,027 < 6,207 < 6,27 < 6,277 hay - 6,027 > - 6,207 > - 6,27 > - 6,277.

Vậy các số theo thứ tự giảm dần là: - 6,027; - 6,207; - 6,27; - 6,277.

Bài 5 trang 47 Toán lớp 6 Tập 2: Trong một cuộc thi chạy 200 m, có ba vận động viên đạt thành tích cao nhất là:

Mai Anh: 31,42 giây; Ngọc Mai: 31,48 giây; Phương Hà: 31,09 giây.

Vận động viên nào đã về nhất? Về nhì? Về ba?

Lời giải:

Ta cần so sánh thời gian hoàn thành cuộc đua của các vận động viên tham gia:

Ta có 31 = 31 = 31, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 4 nên 31,09 là số bé nhất.

Còn hai số còn lại 31,42 và 31,48, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần trăm. Do 2 < 8 nên 31,42 < 31,48.

Từ đó suy ra: 31,09 < 31,42 < 31,48.

Vận động viên về nhất là vận động viên đến đích sớm hơn hay mất ít thời gian nhất để hoàn thành cuộc đua. Vận động viên về nhì là vận động viên mất ít thời gian tiếp theo. Vận động viên về ba là vận động viên mất nhiều thời gian nhất trong ba vận động viên.

Vậy vận động viên về nhất là bạn Phương Hà, vận động viên về nhì là bạn Mai Anh, vận động viên về ba là bạn Ngọc Mai.

Xem thêm các bài giải Toán lớp 6 Cánh diều hay, chi tiết khác:

Giải Toán 6 trang 44 Tập 2

Giải Toán 6 trang 45 Tập 2

Giải Toán 6 trang 46 Tập 2

Giải Toán 6 trang 47 Tập 2

Đánh giá

0

0 đánh giá