Giải toán 10 trang 35 Tập 2 Chân trời sáng tạo

2.9 K

Với Giải toán 10 trang 35 Tập 2 Chân trời sáng tạo chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải toán 10 trang 35 Tập 2 Chân trời sáng tạo

Thực hành 1 trang 35 Toán lớp 10: Khai triển các biểu thức sau

a) (x2)4

b) (x+2y)5

Phương pháp giải:

Sử dụng công thức nhị thức Newton

Lời giải:

a) (x2)4

=x4+4x3.(2)+6x2.(2)2+4x(2)3+(2)4=x48x3+24x232x+16

b) (x+2y)5

=x5+5.x4.(2y)+10.x3.(2y)2+10.x2.(2y)3+5.x.(2y)4+1.(2y)5=x5+10x4y+40x3y3+80x2y3+80xy4+32y5

Thực hành 2 trang 35 Toán lớp 10: Sử dụng công thức nhị thức Newton, chứng tỏ rằng

a) C40+2C41+22C42+23C43+24C44=81

b) C402C41+22C4223C43+24C44=1

Phương pháp giải:

Sử dụng công thức nhị thức Newton

Lời giải:

a)

C40+2C41+22C42+23C43+24C44=14.C40+13.2C41+12.22C42+1.23C43+24C44=(1+2)4=34

=81 (đpcm)

b)

C402C41+22C4223C43+24C44=14.C4013.2C41+12.22C421.23C43+24C44=(12)4=(1)4

=1 (đpcm)

Vận dụng trang 35 Toán lớp 10: Trên quầy còn 4 vé xổ số khác nhau. Một khách hàng có bao nhiêu lựa chọn mua một số vé trong các số vé đó? Tính cả trường hợp mua không vé, tức là không mua vé nào.

Phương pháp giải:

Sử dụng công thức nhị thức Newton

Lời giải:

Mỗi lựa chọn mua vé của khách hàng đó là một tổ hợp chập k của 4 (0k4). Do đó, tổng số lựa chọn mua vé của khách hàng là

 C40+C41+C42+C43+C44=C40.14+C41.13.1+C42.12.12+C43.1.13+C44.14=(1+1)4=24=16

Vậy có tất cả 16 lựa chọn mua một số vé trong số các vé xổ số đó.

Bài tập (trang 35)

Bài 1 trang 35 Toán lớp 10: Sử dụng công thức nhị thức Newton, khai triển các biểu thức sau:

a) (3x+y)4

b) (x2)5

Phương pháp giải:

Sử dụng công thức nhị thức Newton

Bài 1 trang 35 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Lời giải:

a) (3x+y)4=(3x)4+4.(3x)3y+6.(3x)2y2+4.(3x)y3+y4

=81x4+108x3y+54x2y2+12xy3+y4

b)

 (x2)5=(x+(2))5=x5+5.x4.(2)+10.x3.(2)2+10.x2.(2)3+5.x.(2)4+1.(2)5=x552.x4+20x3202.x2+20x42

Bài 2 trang 35 Toán lớp 10: Khai triển và rút gọn các biểu thức sau:

a) (2+2)4

b) (2+2)4+(22)4

c) (13)5

Phương pháp giải:

Sử dụng công thức nhị thức Newton

Bài 2 trang 35 Toán lớp 10 Tập 2 | Chân trời sáng tạo (ảnh 1)

Lời giải:

a) Áp dụng công thức nhị thức Newton, ta có

 (2+2)4=24+4.23.(2)+6.22.(2)2+4.2.(2)3+(2)4=[24+6.22.(2)2+(2)4]+[4.23.(2)+4.2.(2)3]=68+482

b) Áp dụng công thức nhị thức Newton, ta có

(2+2)4=24+4.23.(2)+6.22.(2)2+4.2.(2)3+(2)4   (22)4=(2+(2))4=24+4.23.(2)+6.22.(2)2+4.2.(2)3+(2)4

Từ đó,

(2+2)4+(22)4=2[24+6.22.(2)2+(2)4]=2(16+48+4)=136

c) Áp dụng công thức nhị thức Newton, ta có

(13)5=(1+(3))5=1+5.(3)+10.(3)2+10.(3)3+5.(3)4+1.(3)5=[1+10.(3)2+5.(3)4]+[5.(3)+10.(3)3+1.(3)5]=76443

Bài 3 trang 35 Toán lớp 10: Tìm hệ số của x3 trong khai triển (3x2)5

Phương pháp giải:

Sử dụng công thức nhị thức Newton

(ax+b)5=a5x5+5a4x4.b+10a3x3.b2+10a2x2.b3+5ax.b4+b5

Hệ số của x3 trong khai triển là 10a3b2.

Lời giải:

Áp dụng công thức nhị thức Newton ta có

Hệ số x3 là hệ số của số hạng C53(3x)3(2)2=1080x3

Vậy hệ số của x3 là 1080

Bài 4 trang 35 Toán lớp 10: Cho A={a1;a2;a3;a4;a5} là một tổ hợp có 5 phần tử. Chứng minh rằng tổ hợp con có số lẻ (1,3,5) phần tử của A bằng tập hợp con có số chẵn (0,2,4) phần tử của A

Phương pháp giải:

Bước 1: Tính các tổ hợp con

Bước 2: Sử dụng công thức nhị thức Newton

Lời giải:

Số tổ hợp con có x phần tử là số tổ hợp chập x của 5.

=> Số tổ hợp con có lẻ phần tử là: C51+C53+C55=5+10+1=16

     Số tổ con có chẵn phần tử là: C50+C52+C54=1+10+5=16

C50+C52+C54=C51+C53+C55 (đpcm)

Bài 5 trang 35 Toán lớp 10: Chứng minh rằng C50C51+C52C53+C54C55=0

Phương pháp giải:

Sử dụng công thức nhị thức Newton

Hoặc Cnk=Cnnk

Lời giải:

C50C51+C52C53+C54C55=C50.15C51.14.1+C52.13.12C53.12.13+C54.1.14C55.15=(11)5=05=0

Vậy ta có điều phải chứng minh

Cách 2:

Ta có: C50=C550=C55

Tương tự: C51=C551=C54;C52=C552=C53;

C50C51+C52C53+C54C55=(C50C55)+(C54C51)+(C52C53)=0 (đpcm)

Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải toán lớp 10 trang 33 Tập 2

Đánh giá

0

0 đánh giá