Với Giải toán lớp 7 trang 119 Tập 2 Cánh diều tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 7. Mời các bạn đón xem:
Giải Toán 7 trang 119 Tập 2 Cánh diều
Bài 1 trang 119 Toán 7 Tập 2: Cho tam giác ABC có:
a) Tính .
b) So sánh độ dài các cạnh AB, BC, CA.
Lời giải:
a) Xét tam giác ABC: (tổng ba góc trong một tam giác)
Suy ra .
Vậy
b) Ta có: 37° < 42° < 101° nên .
Do đó CA < BC < AB (quan hệ giữa góc và cạnh đối diện)
Vậy CA < BC < AB.
Bài 2 trang 119 Toán 7 Tập 2: Tìm các số đo x, y trong Hình 140.
Lời giải:
Xét tam giác ABO có OA = AB = BO nên tam giác ABO đều.
Do đó x = 60°.
Tam giác OAC có OA = OC nên tam giác OAC cân tại O.
Do đó .
Ta có là góc ngoài tại đỉnh O của OAC nên .
hay x = y + y = 2y.
Suy ra 2y = 60°
Do đó y = 30°.
Vậy x = 60° và y = 30°.
Bài 3 trang 119 Toán 7 Tập 2: Bạn Hoa đánh dấu ba vị trí A, B, C trên một phần sơ đồ xe buýt ở Hà Nội năm 2021 và xem xe buýt có thể đi như thế nào giữa hai vị trí A và B. Đường thứ nhất đi từ A đến C và đi tiếp từ C đến B, đường thứ hai đi từ B đến A (Hình 141). Theo em, đường nào đi dài hơn? Vì sao?
Lời giải:
Ba vị trí A, B, C mà bạn Hoa đánh dấu tạo thành ba đỉnh của tam giác ABC (Hình 141).
Khi đó trong tam giác ABC ta có: AC + CB > BA (Bất đẳng thức tam giác)
Vậy đường thứ nhất dài hơn đường thứ hai.
Bài 4 trang 119 Toán 7 Tập 2: Cho hai tam giác ABC và MNP có: AB = MN, BC = NP, CA = PM. Gọi I và K lần lượt là trung điểm của BC và NP. Chứng minh: AI = MK.
Lời giải:
GT |
ABC, MNP, AB = MN, BC = NP, CA = PM, I và K lần lượt là trung điểm của BC và NP. |
KL |
AI = MK. |
Chứng minh (Hình vẽ dưới đây):
Xét ABC và MNP có:
AB = MN (giả thiết).
BC = NP (giả thiết).
CA = PM (giả thiết).
Do đó ABC = MNP (c.c.c).
Suy ra .
Do I, K lần lượt là trung điểm của BC và NP nên và
Mà BC = NP (giả thiết) nên BI = NK.
Xét ABI và MNK có:
AB = MN (giả thiết).
(chứng minh trên).
BO = NK (chứng minh trên).
Do đó ABI = MNK (c.g.c).
Suy ra AI = MK (hai cạnh tương ứng).
Vậy AI = MK.
Bài 5 trang 119 Toán 7 Tập 2: Cho Hình 142 có O là trung điểm của đoạn thẳng AB và O nằm giữa hai điểm M, N.
Chứng minh:
a) Nếu OM = ON thì AM // BN;
b) Nếu AM // BN thì OM = ON.
Lời giải:
a)
GT |
OAM, OBN, O là trung điểm của AB, O nằm giữa hai điểm M, N. OM = ON |
KL |
AM // BN; |
Chứng minh (Hình 142):
Xét OAM và OBN có:
AO = BO (do M là trung điểm của AB),
(hai góc đối đỉnh),
OM = ON (giả thiết).
Do đó OAM = OBN (c.g.c).
Suy ra (hai góc tương ứng)
Mà hai góc này ở vị trí so le trong nên AM // BN (dấu hiệu nhận biết)
Vậy AM //BN.
b)
GT |
OAM, OBN, O là trung điểm của AB, O nằm giữa hai điểm M, N. AM // BN |
KL |
OM = ON. |
Chứng minh (Hình 142):
Do AM // BN (giả thiết) nên (hai góc so le trong).
Xét OAM và OBN có:
(chứng minh trên),
AO = BO (do M là trung điểm của AB),
(hai góc đối đỉnh).
Do đó OAM = OBN (g.c.g).
Suy ra OM = ON (hai cạnh tương ứng).
Vậy OM = ON.
Bài 6 trang 119 Toán 7 Tập 2: Cho tam giác ABC cân tại A có
. Hai đường cao BD và CE cắt nhau tại H.
a) Tính số đo các góc còn lại của tam giác ABC.
b) Chứng minh BD = CE.
c) Chứng minh tia AH là tia phân giác của góc BAC.
Lời giải:
GT |
ABC cân tại A, BD AC, CE AB, BD cắt CE tại H. |
KL |
a) Tính số đo các góc còn lại của tam giác ABC; b) BD = CE; c) AH là tia phân giác của góc BAC. |
Chứng minh (Hình vẽ dưới đây):
a) Do tam giác ABC cân tại A (giả thiết)
Nên AB = AC và (tính chất tam giác cân)
Xét tam giác ABC có (tổng ba góc trong tam giác)
Suy ra .
Vậy và
b) Xét ADB (vuông tại D) và ACE (vuông tại E) có:
AB = AC (chứng minh trên),
là góc chung,
Do đó ABD = ACE (cạnh huyền - góc nhọn).
Suy ra BD = CE (hai cạnh tương ứng).
Vậy BD = CE.
c) Vì ABD = ACE (chứng minh câu a) nên AD = AE (hai cạnh tương ứng).
Xét AHE (vuông tại E) và AHD (vuông tại D) có:
AE = AD (chứng minh trên),
AH là cạnh chung.
Do đó AHE = AHD (cạnh huyền - cạnh góc vuông).
Suy ra (hai góc tương ứng).
Do đó AH là tia phân giác của .
Vậy AH là tia phân giác của .
Bài 7 trang 119 Toán 7 Tập 2: Cho hai tam giác nhọn ABC và ECD, trong đó ba điểm B, C, D thẳng hàng. Hai đường cao BM và CN của tam giác ABC cắt nhau tại I, hai đường cao CP và DQ của tam giác ECD cắt nhau tại K (Hình 143). Chứng minh AI // EK.
Lời giải:
GT |
ABC nhọn và ECD nhọn Ba điểm B, C, D thẳng hàng, ABC: hai đường cao BM và CN cắt nhau tại I, ECD: hai đường cao CP và DQ cắt nhau tại K |
KL |
AI // EK. |
Chứng minh (Hình 143):
Vì ABC có hai đường cao BM và CN cắt nhau tại I (giả thiết) nên I là trực tâm của ABC.
Suy ra AI BC.
Vì ECD có hai đường cao CP và DQ cắt nhau tại K (giả thiết) nên K là trực tâm của ECD.
Suy ra EK CD.
Mà B, C, D thẳng hàng (giả thiết) nên
• AI BC (chứng minh trên) suy ra AI BD;
• EK CD (chứng minh trên) suy ra EK BD.
Do đó AI // EK (hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì hai đường thẳng đó song song)
Vậy AI // EK.
Xem thêm các bài giải Toán lớp 7 Cánh diều hay, chi tiết khác: