Giải toán 10 trang 38 Tập 1 Chân trời sáng tạo

844

Với Giải toán 10 trang 38 Tập 1 Chân trời sáng tạo chi tiết giúp học sinh dễ dàng xem và so sánh lời giải từ đó biết cách làm bài tập Toán 10. Mời các bạn đón xem:

Giải toán 10 trang 38 Tập 1 Chân trời sáng tạo

Bài 2 trang 38 Toán lớp 10: Một nhà máy sản xuất hai loại thuốc trừ sâu nông nghiệp là A và B. Cứ sản xuất mỗi thùng loại A thì nhà máy thải ra 0,25 kg khí cacbon dioxide (CO2) và 0,60 kg khí sulffur dioxide (SO2), sản xuất mỗi thùng loại B thì thải ra 0,50 kg CO2  và  0,20 kg SO2. Biết rằng, quy định hạn chế sản lượng (CO2) của nhà máy tối đa là 75 kg và SO2 tối đa là 90 kg mỗi ngày.

a) Tìm hệ bất phương trình mô tả số thùng của mỗi loại thuốc trừ sâu mà nhà máy có thể sản xuất mỗi ngày để đáp ứng các điều kiện hạn chế trên. Biểu diễn miền nghiệm của hệ bất phương trình đó trên mặt phẳng tọa độ.

b) Việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày có phù hợp với quy định không ?

c) Việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày có phù hợp với quy định không ?

Lời giải:

a) Gọi x (thùng) là số thùng thuốc trừ sâu loại A được sản xuất ra trong một ngày, y (thùng) là số thùng thuốc trừ sâu loại B nhà máy sản xuất ra trong một ngày.

- Hiển nhiên, ta có : x ≥ 0, y ≥ 0 và x,y ∈ .

Khi đó, số khí CO2, SO2 thải ra khi sản xuất x thùng thuốc trừ sâu loại A lần lượt là: 0,25x (kg) và 0,6x (kg).

Số khí CO2, SO2  thải ra khi sản xuất y thùng thuốc trừ sâu loại B lần lượt là: 0,5y (kg) và 0,2y (kg).

Tổng lượng khí CO2 thải ra trong một ngày khi sản xuất x thùng thuốc loại A và y thùng thuốc loại B là: 0,25x + 0,5y (kg)

Tổng lượng khí SO2 thải ra trong một ngày khi sản xuất x thùng thuốc loại A và y thùng thuốc loại B là: 0,6x + 0,2y (kg)

- Do quy định hạn chế sản lượng CO2 của nhà máy tối đa là 75 kg và SO2 tối đa là 90 kg mỗi ngày nên ta có các bất phương trình sau :

0,25x + 0,5y ≤ 75;

0,6x + 0,2y ≤ 90.

Vậy, ta có hệ bất phương trình trình mô tả số thùng của mỗi loại thuốc trừ sâu mà nhà máy có thể sản xuất mỗi ngày để đáp ứng các điều kiện hạn chế trên là:

x0y00,25x + 0,5y750,6x + 0,2y90

Biểu diễn miền nghiệm của hệ trên mặt phẳng tọa độ Oxy ta được hình sau:

Một nhà máy sản xuất hai loại thuốc trừ sâu nông nghiệp là A và B

Vậy, miền không tô màu (miền tứ giác OABC, bao gồm cả các cạnh) là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.

b) Việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày tương ứng với x = 100 và y = 80.

Ta có, x = 100 và y = 80 thì:

100>080>00,25.100 + 0,5.80=65<750,6.100 + 0,2.80=76<90

Do đó, cặp (100; 80) là nghiệm của hệ bất phương trình.

Vậy, việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày là phù hợp với quy định.

c) Việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày tương ứng với x = 60 và y = 160.

Ta có, x = 60 và y = 160 thì:

60>0160>00,25.60 + 0,5.160=95>750,6.60 + 0,2.160=68<90

Do đó, cặp (60; 160) không là nghiệm của hệ bất phương trình.

Việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày không phù hợp với quy định.

Bài 3 trang 38 Toán lớp 10: Bạn Lan thu xếp được không quá 10 giờ để làm hai loại đèn trung thu tặng cho các trẻ em khuyết tật. Loại đèn hình con cá cần 2 giờ để làm xong 1 cái, còn loại đèn ông sao chỉ cần 1 giờ để làm xong 1 cái. Gọi x, y lần lượt là số đèn hình con cá và đèn ông sao bạn Lan sẽ làm. Hãy lập hệ bất phương trình mô tả điều kiện của x, y và biểu diễn miền nghiệm của hệ bất phương trình đó.

Phương pháp giải:

Lập các điều kiện ràng buộc đối với x, y thành hệ bất phương trình.

Biểu diễn miền nghiệm của mỗi bất phương trình trên cùng hệ trục tọa độ Oxy.

Lời giải: 

Ta có các điều kiện ràng buộc đối với x, y như sau:

-  Hiển nhiên x0,y0

-  Tổng số giờ làm không quá 10 giờ nên 2x+y10

Từ đó ta có hệ bất phương trình: {2x+y10x0y0(x,yN)

Biểu diễn từng miền nghiệm của hệ bất phương trình trên hệ trục tọa độ Oxy, ta được như hình dưới.

Miền không gạch chéo (miền tam giác OAB, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình.

Bài 4 trang 38 Toán lớp 10: Một học sinh dự định vẽ các tấm thiệp xuân làm bằng tay để bán trong một hội chợ Tết. Cần 2 giờ để vẽ một tấm thiệp loại nhỏ có giá 10 nghìn đồng và 3 giờ để vẽ một tấm thiệp loại lớn có giá 20 nghìn đồng. Học sinh này chỉ có 30 giờ để vẽ và ban tổ chức hội chợ yêu cầu phải vẽ ít nhất 12 tấm. Hãy cho biết bạn ấy cần vẽ bao nhiêu tấm thiệp mỗi loại để có được nhiều tiền nhất.

Phương pháp giải:

Bước 1: Lập các điều kiện ràng buộc đối với x, y thành hệ bất phương trình.

Bước 2: Biểu diễn miền nghiệm của mỗi bất phương trình trên cùng hệ trục tọa độ Oxy.

Lời giải:

Ta có các điều kiện ràng buộc đối với x, y như sau:

- Hiển nhiên x≥0,y≥0

-  Tổng số giờ vẽ không quá 30 giờ nên 2x+3y≤30

-  Số tấm thiệp tối thiểu là 12 tấm nên x+y12

Từ đó ta có hệ bất phương trình: {2x+3y30x+y12x0y0(x,yN)

Biểu diễn từng miền nghiệm của hệ bất phương trình trên hệ trục tọa độ Oxy, ta được như hình dưới.

Miền không gạch chéo (miền tam giác ABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình.

Với các đỉnh  A(6;6),B(15;0),C(12;0).

Gọi F là số tiền (đơn vị: nghìn đồng) thu được, ta có: F=10x+20y

Tính giá trị của F tại các đỉnh của tam giác:

Tại A(6;6):F=10.6+20.6=180

Tại B(15;0):F=10.15+20.0=150

Tại C(12;0):F=10.12+20.0=120

F đạt giá trị lớn nhất bằng 180 tại A(6;6).

Vậy bạn học sinh đó cần vẽ 6 tấm thiệp loại nhỏ và 6 tấm thiệp loại to để có được nhiều tiền nhất.

Bài 5 trang 38 Toán lớp 10: Trong một tuần, bạn Mạnh có thể thu xếp được tối đa 12 giờ để tập thể dục giảm cân bằng hai môn: đạp xe và tập cử tạ tại phòng tập. Cho biết mỗi giờ đạp xe sẽ tiêu hao 350 calo và không tốn chi phí, mỗi giờ tập cử tạ sẽ tiêu hao 700 calo với chi phí 50 000 đồng/giờ. Mạnh muốn tiêu hao nhiều calo nhưng không được vượt quá 7 000 calo một tuần. Hãy giúp bạn Mạnh tính số giờ đạp xe và số giờ tập tạ một tuần trong hai trường hợp sau:

a) Mạnh muốn chi phí luyện tập là ít nhất.

b) Mạnh muốn số calo tiêu hao là nhiều nhất.

Phương pháp giải:

Bước 1: Gọi x, y lần lượt là số giờ đạp xe và tập tạ trong một tuần.

Bước 2: Lập các điều kiện ràng buộc đối với x, y thành hệ bất phương trình.

Bước 3: Biểu diễn miền nghiệm của mỗi bất phương trình trên cùng hệ trục tọa độ Oxy.

Lời giải:

Gọi x, y lần lượt là số giờ đạp xe và tập tạ trong một tuần.

Ta có các điều kiện ràng buộc đối với x, y như sau:

- Hiển nhiên x≥0,y≥0

-  Số giờ tập thể dục tối đa là 12 giờ nên x+y ≤ 12

-  Tổng số calo tiêu hao một tuần không quá 7000 calo nên 350x+700y7000

Từ đó ta có hệ bất phương trình: {x+y12350x+700y7000x0y0

Biểu diễn từng miền nghiệm của hệ bất phương trình trên hệ trục tọa độ Oxy, ta được như hình dưới.

Miền không gạch chéo (miền tứ giác OABC, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình.

Với các đỉnh  O(0;0),A(0;10),B(4;8),C(12;0).

a) Gọi F là chi phí luyện tập (đơn vị: nghìn đồng), ta có: F=50y

Tính giá trị của F tại các đỉnh của tứ giác:

Tại O(0;0),F=50.0=0

Tại A(0;10),F=50.10=500

Tại B(4;8),F=50.8=400

Tại C(12;0).F=50.0=0

F đạt giá trị nhỏ nhất bằng 0 tại O(0;0),C(12;0).

Vậy bạn Mạnh cần đạp xe 12 giờ hoặc không tập thể dục..

b) Gọi T là lượng calo tiêu hao (đơn vị: calo), ta có: T=350x+700y

Tính giá trị của F tại các đỉnh của tứ giác:

Tại O(0;0),T=350.0+700.0=0

Tại A(0;10),T=350.0+700.10=7000

Tại B(4;8),T=350.4+700.8=7000

Tại C(12;0),T=350.12+700.0=4200

T đạt giá trị lớn nhất bằng 7000 tại A(0;10),B(4;8).

Vậy bạn Mạnh có thể chọn một trong hai phương án: Tập tạ 10 giờ hoặc đạp xe 4 tiếng và tập tạ 8 tiếng.

Xem thêm các bài giải Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải toán lớp 10 trang 33 Tập 1 Chân trời sáng tạo

Giải toán lớp 10 trang 34 Tập 1 Chân trời sáng tạo

Giải toán lớp 10 trang 35 Tập 1 Chân trời sáng tạo

Giải toán lớp 10 trang 37 Tập 1 Chân trời sáng tạo

Đánh giá

0

0 đánh giá